
Dynamic UNH EXS Stream Protocol December 19, 2016

ADVERT

DIRECT

sender receiver

User recv buffer

User send buffer

exs_send

exs_recv

Figure 1: An illustration of a direct transfer.

INDIRECT

sender receiver

User recv buffer

User send buffer

exs_send exs_recv

Intermediate
Receive
Buffer

copy

Figure 2: An illustration of an indirect transfer.

This document describes the dynamic stream protocol and algorithms required to im-
plement it in UNH EXS. If you just want a specification of the wire messages sent in the
current version of UNH EXS, read protocol.txt in this directory.

The dynamic stream protocol [1] is intended to optimize sending stream data by sending
zero-copy direct transfers when advertisements are available and sending indirect transfers
when they are not.

During a direct transfer, the sender waits for an advertisement of a registered user data
buffer given in a call to exs recv(). The sender then performs a WWI operation which
places the send data directly into the user’s memory. The advertisement is consumed by this
transfer unless the MSG WAITALL flag was supplied, in which case the advertisement is only
partially consumed and future exs send() operations can continue to use the advertisement
until the buffer is full. A direct transfer is illustrated in Figure 1.

During an indirect transfer, the sender performs a WWI operation to send as much data
as it can from the user’s exs send() buffer to the intermediate buffer at the receiver. There
is currently no intermediate buffer at the sender. The receiver then copies data from the

1



Dynamic UNH EXS Stream Protocol December 19, 2016

ADVERT len=y

ADVERT len=x
INDIRECT len=z

ADVERT len=w

sender receiver

Figure 3: This figure illustrates that the sender cannot be sure exactly which advertisements
were consumed by the indirect transfer. This problem is resolved by the algorithm used by
UNH EXS.

intermediate buffer to the user’s exs recv() buffer. An exs recv() operation is completely
satisfied if any data gets copied unless the MSG WAITALL flag was supplied, in which case
the exs recv() operation remains pending until more data arrives into the intermediate buffer.
An indirect transfer is illustrated in Figure 2.

The dynamic protocol allows a mixture of both direct and indirect transfers. This docu-
ment describes some of the issues that must be handled with this protocol.

The key issue is that although the user requests n bytes in an exs recv() call, UNH
EXS will eventually place m bytes into the user’s buffer, where 1 ≤ m ≤ n. Unless the
MSG WAITALL flag is supplied by the user to request exactly m = n bytes, the exact
value of m is not known at the time that UNH EXS sends the advertisement. However,
the exs recv() call is asynchronous, so the user can have many simultaneously outstand-
ing exs recv() transactions. This presents a problem when the sender tries to reconcile
multiple received advertisements with indirect transfers, as illustrated in Figure 3. Simply
placing a sequence number into the advertisement does not work, since we don’t know the
exact sequence number to use. We also cannot simply force all exs recv() operations to use
MSG WAITALL, since this would not allow the user to request more data than will actually
be sent, which is a behavior that is allowed by TCP.

Thus, in every advertisement, the receiver places an estimated next-expected sequence
number and a phase number. This value is stored in the source seqno field of the transac-
tion block. The estimate is incremented by 1 after each advertisement is sent. When any
exs recv() operation completes, if an advertisement was sent for the operation— whether
or not the transfer was actually direct— we add the difference to source seqno in order
to correct future estimates. That is, if 4 bytes were actually received, we would add 3 to
source seqno.

The phase number simply refers to a sequence of consecutive direct or indirect transfers.
The sender and receiver at each side start at phase 0. During an even numbered phase, direct
transfers are always allowed, since the sender and receiver are guaranteed to be in sync in
the absence of indirect transfers. When the sender sends an indirect transfer, it increments
its phase to an odd number. Similarly, when the receiver receives an indirect transfer, it also

2



Dynamic UNH EXS Stream Protocol December 19, 2016

increments its phase if it was previously even. During an odd phase, the receiver will remain
passive until it has flushed all previous advertisements (by receiving indirect transfers), at
which point it will increment its phase and send a new advertisement. During an odd phase,
an advertisement can only be accepted by the sender if the advertisement has a higher
phase number than the current phase number at the sender, and the sequence number of
the advertisement matches the sender’s current sequence number. This indicates that the
advertisement actually refers to the advertisement at the head of the receiver’s exs recv()
queue. Once the sender accepts an advertisement, the sender increments its phase back
to even. However, if an advertisement with a higher phase number is rejected, the sender
increments its phase to the first odd number beyond the advertisement’s phase. This logic
ensures that when a direct transfer responding to advertisement A arrives at the receiver,
the exs recv() operation corresponding to advertisement A is at the head of the exs recv()
queue.

We discuss specific scenarios that motivated the design in Appendix A of this document.
If any changes are made to the implementation, these scenarios should be re-tested to ensure
that the changes do not cause “stale” advertisements to be affected.

References

[1] P. MacArthur and R. Russell, “An Efficient Method for Stream Semantics over RDMA,”
in Proceedings of the 28th IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS 2014), May 2014.

3



Dynamic UNH EXS Stream Protocol December 19, 2016

A Case Study

The case studies are presented in Figures 4, 5, 6, and 7. The interpretation of the labels is
provided by the legend in Table 1. In all figures, the client is on the left and the server is on
the right. Phase numbers are presented as “Rn” or “Sn”, where “Rn” is the phase number
for data going in the left-to-right direction, and “Sn” is the phase number for data going in
the right-to-left direction.

All scenarios in this case study were discovered by using the pumpexs utility included in
UNH EXS. The pumpexs tool blasts data as quickly as it can from client to server. However,
there is an initialization phase consisting of three steps. First, the client sends the message
“go” to the server. Second, the server receives the message and posts exs recv() transactions
for all of its buffers. Finally, the server sends the message “ok” to the client, which allows
the client to start sending data.

Event Format
Send ADVERT Aid number ;seqno;length; phase
Send Direct WWI D;matching advert ;seqno;length; phase
Send Indirect WWI I;(invalidated adverts if any);seqno; length;phase
Recv Any phase

Table 1: Legend

4



Dynamic UNH EXS Stream Protocol December 19, 2016

I;0;2;S1
A1;0;2;R0

S0
R1

S2 A1;2;100;R2

S2 A2;3;100;R2

S0
D;A1;0;2;S0

D;A1;2;10;S2 R2
A3;13;100;R2D;A2;12;10;S2
R2S2
A4;23;100;R2D;A3;22;10;S2
R2

S3
I;(A4);32;10;S3

S3
A5;33;100;R2

I;(A5);42;10;S3

S3S3
A6;52;100;R4

Figure 4: Here the receiver is forbidden to send an advertisement A6 after receiving indirect
transfer I3 until all outstanding advertisements have been satisfied, whether by direct or
indirect transfer from the sender. In this case, the receiver must wait for advertisement
A5 to be satisfied via an indirect transfer. The sender increments its phase after sending an
indirect transfer and does not accept advertisements with a phase less than its current phase.
Without these restrictions, the sender has no way of knowing how many advertisements are
consumed at the receiver by indirect transfer, creating a possibility of a “break” in the
exs recv() sequence at the receiver.

5



Dynamic UNH EXS Stream Protocol December 19, 2016

D;A1;2;10;S2 R2
A3;13;100;R2D;A2;12;10;S2
R2S2

A4;42;100;R4

D;A3;22;10;S2
R2I;;32;10;S3

R3

A5;52;100;R6

I;(A4);42;10;S3

R5S5
S5

D;A5;52;10;S6

I;0;2;S1
A1;0;2;R0

S0
R1

S1 A1;2;100;R2

S1 A2;3;100;R2

R0
D;A1;0;2;S0

Figure 5: Here, advertisement A4 should be rejected since it was satisfied by indirect transfer
I3. Advertisement A5 should be accepted since at that point the sender has caught up with
the receiver. To do this, we examine the sequence number of the advertisement when we
receive advertisement A5 with a phase 6 which is greater than the current phase at the
sender 5. We only accept the advertisement if the sequence numbers match.

6



Dynamic UNH EXS Stream Protocol December 19, 2016

D;A1;2;10;S2 R2
A3;13;100;R2D;A2;12;10;S2
R2S2

A4;32;100;R2

D;A3;22;10;S2
R2I;(A4);32;10;S3

R3
A5;42;100;R4

I;(A5);42;10;S3

A6;52;100;R6
R5S3

S3
D;A6;52;10;S6

S3

I;0;2;S1
A1;0;2;R0

S0
R1

S1 A1;2;100;R2

S1 A2;3;100;R2

R0
D;A1;0;2;S0

Figure 6: This is another tricky case similar to Figure 5, in which multiple advertisements
are matched by indirect WWI messages. Here, we simply follow the same process and we
wind up matching the correct advertisement.

7



Dynamic UNH EXS Stream Protocol December 19, 2016

D;A1;2;100;S2 R2
D;A2;102;100;S2

R2

A4;500;100;R4

D;A3;202;100;S2
R2I;;302;100;S3
R3

A5;501;100;R4

I;;402;98;S3

A6;502;100;R4

R3

S5
S5

I;(A5);502;100;S5

S5

I;0;2;S1
A1;0;2;R0

S0
R1

S1 A1;2;100;R2

S1 A2;3;100;R2

R0
D;A1;0;2;S0
A3;4;100;R2S1

I;(A4);500;2;S3

R5

Figure 7: This illustrates a very tricky interaction between the stream buffer and the ad-
vertisement sequence. Here, we use a very small stream buffer of 200 bytes, but send and
receive 100 byte messages. This means that when the sender gets ahead after sending D202,
the sender can send a 100 byte indirect transfer (I302), a 98 byte indirect transfer (I402),
and a 2 byte indirect transfer (I500) in sequence before filling the stream buffer and being
unable to send. This means that the sequence number at the sender is now 502. This is
due to the initial 2 byte message that starts the pumpexs application. If the receiver then
catches up and starts sending advertisements after receiving the first two RDMA WRITE
message, the sequence number in the third advertisement A6 will appear to match, but the
correct match would be the previous advertisement A5. To avoid this scenario, we instead
increment the phase as soon as we reject an advertisement to be larger than that in the
advertisement, so that any future advertisements in that sequence will be rejected. In this
case, the sender’s phase is incremented from 3 to 5 since it rejected advertisement A4 with
phase number 4.

8


