
Overview of UNH EXS 1.3.4 for Programmers

Robert D. Russell
Patrick MacArthur

InterOperability Laboratory
University of New Hampshire

Durham, New Hampshire 03824
{rdr,pmacarth}@iol.unh.edu

1. Intr oduction

TheExtended Sockets API(ES-API) is a specification published by theOpenGroup that
defines extensions to the traditional socket API in order to provide asynchronous I/O and also
memory registration for Remote Direct Memory Access (RDMA).These two major new fea-
tures enable programmers to take advantage of today’s multi-core processors and RDMA net-
work hardware, such as InfiniBand, iWARP and RoCE interfaces, in a convenient yet efficient
manner.

This document describes version 1.3.4 of the UNH EXS interface, an extended implementa-
tion of the ES-API. Section 11 outlines the differences between version 1.3.4 and the ES-API
standard.

The UNH EXS interface provides most of the features specified in the ES-API, and pro-
vides a few additional features that give the programmer more flexibility . For example, the pro-
grammer can choose to program with synchronous rather than asynchronous I/O, and/or to pro-
gram with or without memory registration. Theprogrammer can also conveniently “tune” cer-
tain aspects of the EXS interface to take advantage of application requirements in order to pro-
vide better performance.

In addition, the UNH EXS interface is designed to be implemented entirely in user space on
the Linux operating system. This latter feature provides easy porting, modification and adoption
of EXS, since it requires no changes to existing Linux kernels. Thecurrent implementation of
the EXS interface is based on theOpenFabrics Enterprise Distribution (OFED) (recently
renamed to be theOpenFabrics Software (OFS)), a free software package provided by the
OpenFabrics Alliance (OFA). The OFS runs in both user and kernel space, and provides effi-
cient, asynchronous access to various types of RDMA networking hardware, currently Infini-
Band, iWARP and RoCE.The layering structure of this system is shown below. The term
RNIC stands for “RDMA Network Interface Card”, which is the term used by iWARP for the
hardware interface card that enables a computer to use zero-copy transfers over Ethernet fibers
and cables.HCA stands for “Host Channel Adapter”, which is the term used by InfiniBand for
the hardware interface card that enables a computer to use zero-copy transfers over InfiniBand
fabric. RoCEdoes not seem to have a special name for it’s interface card.We will use the term
Channel Adapter (CA) to refer generically to any of the 3 hardware interface cards.

March 28, 2013 Russell and MacArthur Page 1



Overview of UNH EXS 1.3.4 for Programmers

user space user program
EXS interface

OFED user stack
kernel space OFED kernel stack

InfiniBand, iWARP or RoCE driver
hardware InfiniBand HCA iWARP RNIC RoCE NIC

InfiniBand network Ethernetnetwork Ethernetnetwork

The principal difference between the UNH EXS interface and the OpenGroup’s ES-API is
that the UNH EXS interface runs entirely in user space. Therefore, it is not integrated with “nor-
mal” kernel sockets. Thismeans EXS functions cannot be used with “normal” sockets, and EXS
sockets cannot be used with “normal” socket functions. This, in turn, means the UNH EXS
interface had to add numerous functions, such asexs socket(), exs bind(), etc., that the ES-API
does not define because the ES-API expects to be implemented in the kernel and integrated with
“normal” sockets. TheES-API is intended to be an extension to existing “normal” sockets and
therefore does not need to redefine “normal” functions.

Another difference is that the UNH EXS interface is designed as a “thin”, efficient layer
between the user and the Channel Adapter via the OFED stack.It therefore retains much of the
packet orientation of the underlying protocols for bothSOCK STREAM and SOCK SEQ-
PA CKET sockets.

This document gives an overview of the general concepts of EXS, and how the UNH EXS
interface can generally be used by a programmer. It is not a reference manual.

Section 2
starts by giving an overview of the style of programming for which the features offered by
EXS are most suitable. Subsequent topics include EXS asynchronous I/O, dealing with
ev ent queues using theexs qcreate(), exs qdelete() and exs qdequeue() functions, and
the need for memory registration when using RDMA.

Section 3
describes how a user program initializes the EXS environment with theexs init () function.

Section 4
describes how users create and manage EXS client and server connections by using the
exs socket(), exs bind(), exs connect(), exs listen(), exs accept(), andexs close() func-
tions.

Section 5
describes how users transfer data over EXS connections by using theexs send() and
exs recv() functions.

Section 6
describes the internal flow control mechanisms utilized by the UNH EXS interface and their
effects on performance.

March 28, 2013 Russell and MacArthur Page 2



Overview of UNH EXS 1.3.4 for Programmers

Section 7
describes some ways EXS performance can be tuned through the use of theexs fcntl ()
function.

Section 8
describes ways to utilize registered and unregistered memory by using theexs mregister()
andexs mderegister() functions, and theEXS MHANDLE UNREGISTERED value.

Section 9
describes ways to utilize synchronous and asynchronous I/O and the various flags that con-
trol this.

Section 10
gives a series of sample client programs showing how to convert from a client using normal
sockets (with no access to RDMA hardware) to a client using EXS sockets (with full access
to RDMA hardware) in asynchronous mode and explicit memory registration.

Section 11
describes the current status of UNH EXS 1.3.4 and the differences between it and the ES-
API standard.

2. Overview of the EXS style of programming

The general paradigm for programming with EXS is “threads” and “events” programming.
Although it is not necessary to use threads in order to use EXS, it is the simplest way to utilize
the parallelism provided by multi-core processors and to take advantage of the asynchronous I/O
facilities in EXS. Threads are also utilized internally by the UNH EXS interface.

2.1. Asynchronous I/O

EXS accomplishes asynchronous I/O by partitioning the user’s interaction with I/O via the
EXS interface into two distinct phases: the “start” phase, and the “completion” phase.Each
asynchronous operation starts with a start phase. If that phase fails, then there is no subsequent
completion phase — instead, the user must deal with the error. But if the start phase succeeds,
the asynchronous EXS operation proceeds in parallel with independent processing by the user
thread that started it. The completion phase begins when the user calls a separate function that
waits for the asynchronous operation to finish.This function returns detailed results about the
asynchronous operation that can indicate either success or failure of the operation.

In EXS, the start phase of an asynchronous operation is accomplished by new EXS func-
tions with names similar to the standard socket and UNIX I/O function calls. These include:
exs accept(), exs close(), exs connect(), exs recv(), andexs send(). Thesefunctions first ver-
ify that their user-supplied parameter values make such an operation possible.They then cause
the EXS interface to “start” an operation but do not wait for the operation to actually take place.
Instead they immediately return to the user after giving the OFED stack all the information nec-
essary to proceed with the operation in parallel with (i.e., asynchronously to) the user’s threads.

As a parameter to these new asynchronous EXS functions the user must specify a pointer to
a “queue” object previously created by the user (as discussed next in this section). When the
asynchronous operation completes, either successfully or not, the EXS interface will “post a
completion event” to that queue.This “event” is a structure which contains detailed information

March 28, 2013 Russell and MacArthur Page 3



Overview of UNH EXS 1.3.4 for Programmers

about the success or failure of the operation.The user obtains this information by “dequeuing”
the event structure from the queue. If the EXS interface posts the event before the user tries to
dequeue it, the queue object stores the information until the user performs the dequeue operation.
If the user tries to dequeue an event before the asynchronous operation is finished, the dequeue
operation will block until either the EXS interface posts the event or an amount of time specified
by the user as a parameter to the dequeue operation elapses.This can be an indefinite amount of
time. Thereare 3 possible scenarios, as illustrated in the following diagrams.

Step User thread EXSinterface
1 call asynchronous function
2 check parameters
3 return error
4 deal with error

Start phase results in an error, I/O not started.

Step User thread EXSinterface
1 call asynchronous function
2 check parameters
3 start I/O operation
4 return ok
5 proceed with other work proceedwith I/O operation
6 proceed with other work postI/O completion event
7 proceed with other work
8 dequeue I/O completion event
9 process I/O completion event

Start phase ok, user thread callsexs qdequeue() after I/O is complete.

March 28, 2013 Russell and MacArthur Page 4



Overview of UNH EXS 1.3.4 for Programmers

Step User thread EXSinterface
1 call asynchronous function
2 check parameters
3 start I/O operation
4 return ok
5 proceed with other work proceedwith I/O operation
6 dequeue I/O completion event proceedwith I/O operation
7 wait for I/O completion event proceedwith I/O operation
8 wait for I/O completion event postI/O completion event
9 process I/O completion event

Start phase ok, user thread callsexs qdequeue() before I/O is complete.

2.1.1. Creating an event queue

A user creates an event queue by using:

qhandle = exsqcreate(depth);

wheredepth specifies the guaranteed minimum number of events that the user wants to be able
to store in this queue. This function dynamically allocates memory to hold at least that number
of event structures.A user can create numerous different event queues, but these are valid only
in the context of the calling process (and its threads) — these event queues are not valid in any
child processes forked by this parent. The value returned inqhandle will be NULL if there was
an error of some sort, in which case the error code is stored in the globalerrno. Otherwise, the
value returned inqhandle is a “handle” (i.e., a pointer) of typeexs qhandle t, which must be
passed as a parameter in subsequent EXS function calls that start asynchronous operations.This
handle identifies the queue to which an asynchronous operation will post its completion event.

2.1.2. Deletingan event queue

A user deletes an event queue by using:

result = exs qdelete(qhandle);

whereqhandle identifies a previously created event queue. The value returned inresult will be
0 if the call toexs qdelete() was successful, or -1 if there was an error of some sort, in which
case the error code is stored in the globalerrno.

Note that any completion events posted to, but not yet dequeued from, this queue will be
lost when this function is called. Also note that any outstanding asynchronous operations that
reference this queue and that have been started but not yet completed will cause the call to
exs qdelete() to fail.

2.1.3. Usingan event queue

Following a successful call to one or more EXS asynchronous functions, the user must use:

nevents = exs qdequeue(qhandle, event vector, count, timeout);

March 28, 2013 Russell and MacArthur Page 5



Overview of UNH EXS 1.3.4 for Programmers

to wait for those EXS asynchronous functions to complete. In the call toexs qdequeue(), qhan-
dle must be the same value used previously in the EXS asynchronous function call that started an
operation,ev ent vector must be a user-provided array big enough to holdcount ev ents of type
exs ev ent t, and timeout is a pointer to a structure of typestruct timeval containing the maxi-
mum amount of time the user wants to wait for an event to happen.The timeout parameter can
be NULL if the user wants to wait indefinitely. This call toexs qdequeue() will block until
either thetimeout elapses or at least one event is posted to the queue and is copied into
ev ent vector. The value returned innevents will be 0 if a timeout occurred, a positive value if
nevents ev ents were removed from the queue and copied intoev ent vector, or -1 if there was an
error of some sort, in which case the error code is stored in the globalerrno.

If the nevents value returned byexs qdequeue() is positive, then each of the firstnevents
structures of theev ent vector array will have been filled in by the EXS interface with informa-
tion to identify the operation that posted the event and to convey back to the user the final results
of that operation.For each of these structures in theev ent vector array, the following fields will
be filled in as follows:

exs evt errno
is 0 if the asynchronous I/O operation completed successfully, otherwise it contains an error
code (i.e., a Linuxerrno value) to indicate why it failed.

exs evt socket
is a copy of the fd parameter value used in the EXS asynchronous function to identify the
connection.

exs evt ahandle
is a copy of the ahandle parameter value used in the EXS asynchronous function.This
value is chosen by the user for identification purposes only, and is opaque to (i.e., not used
by) the EXS interface.

exs evt type
is a constant value indicating which type of EXS asynchronous function caused the event.
These values will be discussed below with the individual EXS asynchronous functions.
Examples includeEXS EVT ACCEPT, EXS EVT CLOSE, EXS EVT CONNECT,
EXS EVT RECV andEXS EVT SEND.

exs evt union
contains a structure whose type depends on theexs evt type value. Thefields in these
structures will be discussed below with the individual EXS asynchronous functions.

2.2. Memoryregistration

In order to utilize the direct memory-to-memory transfer feature of the RDMA interface
hardware, the CA requires that the virtual memory involved on both ends of a transfer be “regis-
tered”. Thisregistration accomplishes several necessary functions:

(1) It establishes the location and size of a memory area to be utilized in RDMA transfers;

(2) It establishes the read/write/execute permissions granted to both the local and remote
CAs for accessing that memory area;

(3) It “pins” the user’s virtual memory area into real (i.e., physical) memory so that a CA can
access the memory without going through the CPU’s paging hardware.

March 28, 2013 Russell and MacArthur Page 6



Overview of UNH EXS 1.3.4 for Programmers

Note that any type of virtual memory can be registered — stack memory, heap memory,
global memory, etc. Commonusage will most likely be to register dynamically allocated mem-
ory, but since this is not necessary, EXS does NOT allocate the memory it is registering.

The mechanism by which a user explicitly registers and deregisters memory is described in
section 8 below. That section also describes a means by which the user can request dynamic reg-
istration and deregistration of memory as part of an individual EXS function call.A word of
warning, however: dynamic registration and deregistration is an expensive procedure, and should
be used only as a temporary “bridge” when converting an existing application from “normal”
sockets to EXS. The benefits of EXS require explicit memory registration by the user program.

3. Establishingthe EXS environment

Unlike with normal sockets, a program that wants to utilize EXS must explicitly initialize
the EXS environment by using:

result = exs init(version);

whereversion is the version of the EXS interface the user wishes to use. The current version is
given by the global constantEXS VERSION, which is defined in the fileexs.hwhich, in turn,
must be included by all programs wishing to utilize EXS.The result value is 0 if the exs init()
was successful, or -1 if there was an error of some sort, in which case the error code is stored in
the globalerrno.

This function will initialize the EXS interface for the calling process.It must be performed
exactly once before any other EXS function is called, and is usually placed near the beginning of
program execution.

4. Managingan EXS connection

As with classic sockets, there are three different types of connections a user can create:

(1) aclient connection

(2) aserver listening post

(3) aserver agent connection

4.1. Creating an EXS socket

In order to establish either a client connection or a server listening post, the user must first
set up the local endpoint for the connection by using:

fd = exs socket(domain, sockettype, protocol);

where the value ofdomain must bePF INET or PF INET6 (or equivalently, AF INET and
AF INET6 ), socket type must be eitherSOCK STREAM or SOCK SEQPACKET , and
protocol must beIPPROT O TCP (or equivalently, 0). This is a synchronous operation, so
there is no event associated with its completion. The value returned infd will be -1 if there was
an error of some sort, in which case the error code is stored in the globalerrno; otherwise, the
value returned infd is a non-negative integerfile descriptor which must be used to identify this
connection in all subsequent calls to EXS functions.

March 28, 2013 Russell and MacArthur Page 7



Overview of UNH EXS 1.3.4 for Programmers

As of version 1.3.0, a large intermediate receive buffer will be allocated for
SOCK STREAM sockets unless this feature is turned off via the interfaces described in section
7. Thesize of this buffer defaults to 3 Gigabytes, and may also be modified via the interfaces
described in section 7.

Which EXS functions to call after a successful return fromexs socket() depends on
whether the user wants to establish a client connection or a server listening post.

4.2. Establishingan EXS client connection

The client end of a connection is the simplest to establish, although this operation will not
succeed unless the remote server’s listening post has been previously established (discussed in
section 4.3.1). Creation of a client connection is started by:

result = exs connect(fd, server address, server addrlen, connect flags, timeout, qhandle, ahandle);

This function is normally the next EXS function called by a client after a successful call to
exs socket(), andfd identifies the endpoint established by theexs socket(). server addressis a
pointer to a structure of typestruct sockaddr into which the user has stored the IPv4/IPv6
address and port number of the server’s listening post.server addrlen is the size in bytes of the
structure pointed to byserver address. The value of theconnect flags parameter is usually 0,
but see below for the other possibilities.timeout is a structure of typestruct timeval which
specifies the maximum amount of time the client thread is willing to wait for theexs_connect()
to complete successfully. If the timeout pointer is NULL,exs_connect() will wait indefinitely.
qhandle identifies an event queue that will be used to wait for the completion of thisexs con-
nect(), andahandle is an arbitrary pointer value chosen by the user which will be returned in the
exs_evt_ahandlefield of the event notification (discussed previously in section 2.1.3).

The value returned inresult will be 0 if theexs connect() was successfully started, or -1 if
there was an error of some sort, in which case the error code is stored in the globalerrno and no
asynchronous activity is started.

If the exs connect() started successfully, it will operate asynchronously with the user
thread that started it.During this time the user should not call any additional EXS functions for
this connection, because the internal state of the connection will be undefined until theexs con-
nect() has completed and the EXS interface has posted to the user’s qhandle an event whose
exs evt type field contains the value EXS EVT CONNECT. Once this event has been
received, the user is able to use the connection to transmit data to and from the remote server.

The onlyconnect flagsvalue currently defined forexs connect() is EXS BLOCK . When
this flag value is present, the value of theqhandle andahandle parameters are ignored by the
EXS interface, and can be NULL.The EXS BLOCK flag value should be supplied when the
user wants theexs connect() to operate synchronously rather than asynchronously.

4.3. Establishinga server EXS connection

Establishing a server is a bit more complex than establishing a client. As with regular sock-
ets it involves two distinct sequences.

March 28, 2013 Russell and MacArthur Page 8



Overview of UNH EXS 1.3.4 for Programmers

4.3.1. Establishinga server l istening post

A listening postis the socket endpoint set up by a server in order to allow clients to be able
to contact the server. To enable such contact, a listening post must be bound to an IPv4/IPv6
address and port number pair that is known to clients. This IPv4/IPv6 address and port number
pair is analogous to a “1-800” number set up by a business — it must be known to customers
who will use it to contact the business by telephone.

The first step in establishing a listening post is to create the socket endpoint using the
exs socket() function, as already discussed in section 4.1. The next step is to bind that socket
endpoint to the IPv4/IPv6 address and port number pair which will be utilized by clients in the
exs connect() function, as just discussed in section 4.2. This binding is done by using:

result = exs bind(fd, server address, server addrlen);

The fd parameter identifies the endpoint established by a previously successful call to
exs socket(). server addressis a pointer to a structure of typestruct sockaddr into which the
user has stored the IPv4/IPv6 address and port number to be assigned by the EXS interface to the
server, and server addrlen is the size in bytes of the structure pointed to byserver address.
This is a synchronous operation, so there is no event associated with its completion.The value
returned inresult will be 0 if the call toexs bind() was successful, or -1 if there was an error of
some sort, in which case the error code is stored in the globalerrno.

After a successful call toexs bind(), the next step in establishing a listening post is to iden-
tify the socket to the EXS interface as a listening post and to establish abacklog for it. This
backlog is analogous to establishing the maximum number of calls which can be kept waiting on
a 1-800 line, and is accomplished using:

result = exs listen(fd, backlog);

fd has the same value as that used in the previous call toexs bind(), andbacklog is the maxi-
mum number of client connections that can be “kept on hold” until a server connection dedicated
to a new client can be set up (i.e., until a customer can be switched to a free agent in the 1-800
call center). This is a synchronous operation, so there is no event associated with its completion.
The value returned inresult will be 0 if theexs listen() was successful, or -1 if there was an
error of some sort, in which case the error code is stored in the globalerrno.

At this point the server process is ready to somehow convey the IPv4/IPv6 address (or DNS
name) and port number of its listening post to potential client processes all over the world. Well
established servers, such as the World Wide Web HTTP service, have been assigned “Well
Known Ports” by IANA (the Internet Assigned Numbers Authority) (e.g., port 80 has been
assigned to the HTTP service), so this knowledge is available to every browser in the world, and
programmers only have to know the IPv4/IPv6 address (or DNS name) of their destination in
order to connect their client process to an HTTP server. Most programmers do not have the lux-
ury of working with Well Known Ports.Therefore, the means by which the server’s IPv4/IPv6
address and port number are made known to clients is outside the scope of EXS.

4.3.2. Acceptingconnections on the server

Once a server has established a listening post, it needs to set up to accept connections from
clients. Thisis analogous to hiring agents to answer the phones in the 1-800 call center. When a

March 28, 2013 Russell and MacArthur Page 9



Overview of UNH EXS 1.3.4 for Programmers

business answers a call to the 1-800 number, the call is switched to a separate line into a call cen-
ter where a single agent deals exclusively with that individual customer — the 1-800 number
remains ready to accept new calls and to switch them to other agents.Similarly, when the listen-
ing post accepts a connection from a client, it creates a new socket that will deal exclusively with
that client — the listening post itself remains ready to accept new connections, but never actually
transfers any data with any clients. Thelistening post is set up to do this using:

result = exs accept(fd, addressvector, count, accept flags, qhandle);

The fd parameter is the same as the one used in a previously successful call toexs listen(),
address vector is a pointer to an array of structures of typeexs acceptaddr, and count is the
number of elements in that array. The value of theaccept flags parameter will usually be 0;
other flag values currently defined forexs accept() are discussed below. qhandle identifies an
ev ent queue on which a user can wait for the completion of thisexs accept().

The value returned inresult will be 0 if theexs accept() was successfully started, or -1 if
there was an error of some sort, in which case the error code is stored in the globalerrno and no
asynchronous activity is started.

The array of structures pointed to byaddress vector must have been allocated by the user
before callingexs accept(). Continuingthe 1-800 analogy, there will be one element in this
array for each agent available in the call center. Each element of the array contains the following
three fields, which must be initialized by the user prior to callingexs accept() as follows:

exs addr
is a pointer to a structure of typestruct sockaddr into which the IPv4/IPv6 address and
port number of a new remote client will be stored by the EXS interface (this is how the
agent is able to identify the customer who is calling).If the user does not wish to get this
information, this pointer can be NULL or the value of theexs addrlen parameter can be 0.

exs addrlen
is the number of bytes allocated by the user to the structure pointed to byexs addr. If that
pointer is NULL, or if the user does not wish to get the remote client’s IPv4/IPV6 address
in theexs addr parameter, the value ofexs addrlen can be 0.

exs ahandle
is an arbitrary pointer value chosen by the user for identification purposes only, and is never
looked at by the EXS interface. Itwill be returned in theexs evt ahandle field of the
ev ent notification (as previously discussed in section 2.1.3).

Following the call toexs accept(), the user must use:

nevents = exs qdequeue(qhandle, event vector, count, timeout);

to wait for clients to performexs connect() operations to this server’s listening post. The
exs qdequeue() function has already been explained in section 2.1.3.To repeat from that sec-
tion, qhandle must point to the same event queue as that used in the call toexs accept(),
ev ent vector must be a user provided array big enough to holdcount ev ents of type
exs ev ent t, and timeout is a pointer to a structure of typestruct timeval containing the maxi-
mum amount of time the user wants to wait for an event to happen.The timeout parameter can
be NULL if the user wants to wait indefinitely.

March 28, 2013 Russell and MacArthur Page 10



Overview of UNH EXS 1.3.4 for Programmers

If the nevents value returned byexs qdequeue() is positive, then each of the firstnevents
structures of theev ent vector array were filled in by the EXS interface with information to iden-
tify each operation that posted an event to this event queue and to convey the final results of each
operation back to the user. For an event associated with anexs accept(), the following fields of
theexs ev ent t structure will be filled in (as generically described in section 2.1.3):

exs evt errno
is 0 if the exs accept() operation completed successfully, otherwise it contains an error
code (i.e., a Linuxerrno value) to indicate why it failed.

exs evt socket
is a copy of the listening post’s fd value that was used as a parameter in the call to
exs accept(),

exs evt ahandle
is a copy of theahandlevalue stored by the user in theexs ahandlefield of an element in
the array pointed to by theaddress vector parameter to theexs accept(). This value is
chosen by the user for identification purposes only, and is not used by the EXS interface.

exs evt type
is EXS EVT ACCEPT.

exs evt union
contains a structure of typeexs evt acceptthat has been filled in by the EXS interface with
values in the following fields:

exs evt new socket
is the file descriptor identifying the new connection to the client — this value should
be used by the server from this point on to transmit data to/from that client.This is
analogous in the 1-800 call center to the line to an exclusive agent to which the cus-
tomer is switched.However, the analogy is not perfect because the call center line
must already exist (as extension 123, for example), whereas this file descriptor repre-
sents a new socket created internally by theexs accept() function. It is as if the
exs accept() internally callsexs socket() for each new client, and the socket created
by this internal call toexs socket() has a file descriptor that is different from any
existing file descriptors. Note that this scheme is not new to EXS — theaccept()
function for normal sockets works in exactly the same manner.

exs evt addr
is a copy of the exs addr pointer from an element in the array pointed to by the
address vector parameter to theexs accept(). The structure pointed to by the
exs evt addr field is of typestruct sockaddr, and will now contain the IPv4/IPv6
address and port number of the remote client at the other end of the new connection.

exs evt addrlen
contains the number of bytes used to store the client’s IPv4/IPv6 address and port
number in the structure pointed to byexs evt addr.

Once a new connection to a client has been indicated by a successful completion event, it is
common for a server process to spawn a new “agent” thread to deal exclusively with that client.
This is analogous to switching a customer’s call to an agent in the 1-800 call center. The file

March 28, 2013 Russell and MacArthur Page 11



Overview of UNH EXS 1.3.4 for Programmers

descriptor from theexs evt new socketfield in theexs evt acceptstructure should be used by
this agent thread in all theexs send() andexs recv() functions for transactions with that client.
When the agent thread’s dealings with this client are finished, that thread should callexs close()
with this fd and then terminate.Just the agent thread needs to terminate, not the server listening
post thread. Here the 1-800 analogy breaks down, because human agents will just hang up with
one customer and wait for a call from another customer. With EXS, as with normal sockets,
there is no way to reuse a socket — a new one must be created byexs accept() as each new
client connects.

The onlyaccept flags value currently defined forexs accept() is EXS BLOCK . When
this flag value is present, the value of thecount parameter MUST be exactly 1, since thefd for
only 1 remote connection can be returned by 1 call.The value of theqhandle parameter is
ignored by the EXS interface, and can be NULL.TheEXS BLOCK flag value should be sup-
plied when the user wants theexs accept() to operate synchronously rather than asynchronously.
A synchronousexs accept() blocks until a remote client connects, at which time theresult
returned byexs accept() will be thefd for the new connection to the remote client.Note that in
this case noexs ev ent t structure is generated for the user, so the other fields in that structure
are not available to the user. This means that theexs ahandle field in the first (and only)
address vector is also ignored by the EXS interface, and can be NULL.

4.4. Closingan EXS connection

When the user has finished using a connection of any of the three types discussed above, the
user calls the following function:

result = exs close(fd, closeflags, qhandle, ahandle);

where fd identifies the connection to be closed,flags contains flags that modify the normal
behavior of this call,qhandle identifies an event queue that will be used to wait for the comple-
tion of this call toexs close(), andahandle is an arbitrary pointer value chosen by the user
which will be returned in theexs evt ahandle field of the event notification (discussed previ-
ously in section 2.1.3).

The value returned inresult will be 0 if exs close() was successfully started, or -1 if there
was an error of some sort, in which case the error code is stored in the globalerrno and no asyn-
chronous activity is started.

If the exs close() started successfully, it will operate asynchronously to the user thread that
called it. During this time the user should not call any additional EXS functions using thisfd to
identify the connection, because thefd may become invalid and the internal state of the connec-
tion may become undefined once anexs close() is called. When theexs close() completes, the
EXS interface will post to the user’s qhandle an event whoseexs_evt_typefield contains the
value EXS_EVT_CLOSE. Theexs evt errno, exs evt socket, and exs evt ahandlefields of
the event will be filled in as previously described in section 2.1.3.No additional information is
stored in theexs evt union field for events of this type.

It is highly recommended that, prior to exiting a program or thread, a user always call
exs close() for each connection controlled by that program or thread.The reason for this is that
EXS is inherently asynchronous, so many EXS functions called by a user simply start an asyn-
chronous operation — the real work takes place asynchronously to the thread that called the EXS

March 28, 2013 Russell and MacArthur Page 12



Overview of UNH EXS 1.3.4 for Programmers

function. Therefore,when writing code, a user might not be aware of all that is being accom-
plished asynchronously, so that what looks to be finished to a user might not be finished in the
EXS interface. Callingthe exs close() function ensures that this asynchronous activity is fin-
ished, whereas exiting the program or thread would not ensure this, and thus all data might not
be transmitted.Calling exs close() also helps to cleanly shutdown the other end of the connec-
tion.

The onlyclose flags value currently defined forexs close() is EXS BLOCK . When this
flag value is present, the value of theqhandle andahandle parameters are ignored by the EXS
interface, and can be NULL.The EXS BLOCK flag value should be supplied when the user
wants theexs close() to operate synchronously rather than asynchronously.

5. Basicdata transfer over an EXS connection

There are two basic, complementary operations that transfer data over an EXS connection:
exs send() andexs recv(). Thesetwo operations are used regardless of how the connection was
established, since both clients and servers need to be able to both send and receive data. Bothof
these functions are asynchronous, so they only start the data transfer — the user must explicitly
call exs qdequeue() to know when the transfer finishes.

5.1. Sendingdata asynchronously

A user sends data asynchronously by using:

result = exs send(fd, sendbuffer, send length, send flags, qhandle, ahandle, mhandle);

wherefd identifies the connection, and the user has filledsend buffer with send length bytes
of data prior to callingexs send(). This send buffer must be completely within an area of
memory that was assigned the memory registration key mhandle in a previous call toexs mreg-
ister(). send flagswill usually have the value 0; other flags currently defined forexs send() are
discussed in sections 9 and 10 below. qhandle identifies an event queue previously created by
the user to wait for completion events. ahandle is an arbitrary pointer value chosen by the user
which will be returned in theexs evt ahandle field of the completion event notification (dis-
cussed previously in section 2.1.3).

5.2. Receiving data asynchronously

A user receives data by using:

result = exs recv(fd, recv buffer, max length, recv flags, qhandle, ahandle, mhandle);

wherefd identifies the connection, and the user has reserved arecv buffer capable of holding
max length bytes of data.This recv buffer must be completely within an area of memory that
was assigned the memory registration key mhandle in a previous call to exs mregister().
recv flags will usually have the value 0, unless other flags are desired. As of version 1.3.0, for
SOCK STREAM sockets, theMSG WAITALL flag will make the exs recv() operation wait
until it can fill all max length bytes; otherwise, the operation will complete as soon as any data
is received. For SOCK SEQPACKET sockets, theMSG WAITALL flag has no effect. Other
effects of this flag and additional flags currently defined forexs recv() are discussed in sections
9 and 10 below. qhandle identifies an event queue previously created by the user to wait for
completion events. ahandle is an arbitrary pointer value chosen by the user which will be

March 28, 2013 Russell and MacArthur Page 13



Overview of UNH EXS 1.3.4 for Programmers

returned in theexs evt ahandlefield of the completion event notification (discussed previously
in section 2.1.3).

5.3. Waiting for asynchronous I/O completion events

The value returned byexs send() or exs recv() in result will be 0 if the operation was suc-
cessfully started, or -1 if there was an error of some sort, in which case the error code is stored in
the globalerrno and no asynchronous activity is started.

Once anexs send() or exs recv() is successfully started, it will operate asynchronously to
the user program. During this time the user must not in any way modify the area of memory
pointed to by the buffer parameter, because the data in that buffer has still not been transferred
across the connection. Eventually the user must use:

nevents = exs qdequeue(qhandle, event vector, count, timeout);

to wait for the operation to finish so that the buffer can be safely accessed again. Theexs qde-
queue() call was explained in section 2.1.3.qhandle must be the value used in theexs send()
or exs recv(), ev ent vector must be an array big enough to holdcount ev ents of type
exs ev ent t, and timeout is the maximum amount of time the user wants to wait for an event to
happen (NULL for an indefinite wait).

If the value returned innevents is positive, then each of the firstnevents structures of the
ev ent vector array were filled in by the EXS interface with information to identify the operation
that caused this event and to convey the final results of that operation back to the user. For each
of these structures, the fieldsexs evt errno, exs evt socket, and exs evt ahandlewill be filled
in by the EXS interface with the values explained previously (in section 2.1.3). In addition:

exs evt type
will indicate which type of operation caused the event: EXS EVT SEND if the operation
was exs send(), orEXS EVT RECV if the operation wasexs recv().

exs evt union
will contain a structure of typeexs evt xfer that contains the following fields:

— exs evt buffer is the buffer address specified in theexs send() or exs recv()
— exs evt mhandle is themhandlespecified in theexs send() or exs recv()
— exs evt amount lost is described below in section 5.4
— exs evt length is the number of bytes successfully transferred by this operation.
When the value ofexs evt type is EXS EVT SEND and the operation was success-
ful, the value ofexs evt length will always be equal to the value of thesend length
parameter in the originalexs send(). When the value of exs evt type is
EXS EVT RECV and the operation was successful, the value ofexs evt length
will always be less than or equal to the value of themax length parameter in the
originalexs recv().

5.4. Matchingsends with receives

Since the amount of data sent in one packet by anexs send() may differ from the amount
of data requested in the remote side’s correspondingexs recv(), the EXS interface layer must
rationalize any difference. For efficiency, the way it does this is very packet-oriented, and hence
differs somewhat from the way this is done in traditional sockets.

March 28, 2013 Russell and MacArthur Page 14



Overview of UNH EXS 1.3.4 for Programmers

5.4.1. Receiver’ s buffer is greater than or equal to amount of data in sender’s packet

If the receiver provides a buffer whose size is greater than or equal to the size of the data in
the matching send packet, there is no problem — the EXS interface delivers all the sent data into
the beginning of the receiver’s buffer, any remaining space at the end of the receiver’s buffer is
left undefined, the value returned inexs evt length is the exact number of bytes delivered into
the buffer, andexs evt amount lost is always zero.

5.4.2. Receiver’ s buffer is less than amount of data in sender’s packet

If the receiver provides a buffer whose size is less than the size of the data in the matching
send packet, the resolution depends on the type of socket in use.For all socket types, the EXS
interface completely fills the receiver’s buffer with the first part of the sent data, and returns in
exs evt length the exact number of bytes delivered into the buffer.

If the socket type isSOCK STREAM , the EXS interface ignores packet boundaries, so it
saves the remainder of the data that is in the matching send packet and uses it to match with sub-
sequentexs recv() calls. No data is ever lost, so the value returned to the receiver in
exs evt amount lost is always zero.

If the socket type is SOCK SEQPACKET , the EXS interface maintains packet bound-
aries, so it discards the remainder of the data in the matching send packet, and returns to the
receiver in exs evt amount lost the number of bytes discarded.

6. Basicflow control within the EXS interface

Because data sent byexs send() operations on one end of a connection must be delivered
into buffers specified byexs recv() operations on the other end, the EXS interfaces on both ends
must coordinate the flow of this data so that neither side runs out of buffers. Thisis done in a
manner that is largely transparent to the user.

Since a user must allocate and fill a memory buffer before specifying it as thesend buffer
parameter toexs send(), the EXS interface does not have to provide any additional storage for
data on the sending side.However, the interface cannot actually send data until it knows for sure
that the user on the receiving side has provided a corresponding buffer into which the sender’s
data can be delivered without any additional copying or buffering (because EXS uses direct
memory to memory transfers). The EXS interface uses a credit mechanism to accomplish this.

6.1. Sendand Receive Credits

The interface on each end of an established connection internally maintains two dynami-
cally varying local credit values. Atany time “sendcredits” is the maximum number of packets
this interface is allowed to start sending to the other side usingexs send(); and “recv credits” is
the maximum number of packets this interface is allowed to start receiving from the other side
using exs recv(). At any time the value ofsend credits on one side must equal the value of
recv credits on the other side, and vice versa. Asexplained in the next section (6.2), when an
EXS connection is first established, the EXS interfaces on both sides negotiate these numbers so
that they are initialized to the same values.

Each time a user issues anexs recv(), the receiving EXS interface reduces its local
recv credits by one. If the balance would become negative, the receiving interface setserrno to

March 28, 2013 Russell and MacArthur Page 15



Overview of UNH EXS 1.3.4 for Programmers

EBUSY and returns -1 (the caller is expected to then wait for previousexs recv() operations to
complete by callingexs qdequeue()). If the caller wishes to wait until a credit is available, the
EXS CREDIT WAIT flag can be provided, but then it is up to the caller to ensure that this will
not cause a deadlock. If the balance would not become negative, the receiving interface sends an
“advertisement” to the sending side and then returns a value of 0 to the caller of theexs recv() to
indicate that theexs recv() has started successfully. This advertisement contains no data, but
rather information (or “metadata”) describing the memory on the receiver that is now ready to
receive data from the sender (i.e., its length, location, and memory registration key).

The sending interface must keep track locally of thesend credits it has negotiated with the
receiver. Each time a sending user issues anexs send(), the sending EXS interface reduces its
local send credits by one. If the balance would become negative, the sending interface sets
errno to EBUSY and returns -1 (the caller is expected to then wait for previousexs send() oper-
ations to complete by callingexs qdequeue()). If the caller wishes to wait until a credit is avail-
able, theEXS CREDIT WAIT flag can be provided, but then it is up to the caller to ensure that
this will not cause a deadlock. If the balance would not become negative, the sending interface
adds the information (i.e., “metadata”) from thisexs send() to an internal queue and returns a
value of 0 to the caller of theexs send() to indicate that theexs send() has been started success-
fully.

6.2. Negotiationsat connection establishment

At the time an EXS connection is first established, the client side automatically sends the
server a short “setup request” message that contains the client’s EXS version number (currently
1), and the initial values of the client’s send credits, and recv credits. Upon receiving this
“setup request” message, the server side of the connection compares the values contained in this
message with its own corresponding values. Theminimum of each corresponding value is used
to reset the server’s own value and to build a “setup response” message that it sends back to the
client. Oncethe client receives this “setup response” message, it uses those values to set its own
corresponding values. Consequently, from that point in time on, both ends of the newly estab-
lished connection have the same value for each of the corresponding parameters, and the flow
control mechanism will now function properly. These negotiations are transparent to the user.

Following these negotiations, the EXS interface on each side of a newly established connec-
tion sets up one internal receive buffer for each localsend credit that it has negotiated with the
corresponding receiving side. These buffers are used to store EXS advertisements as they arrive
from the remote end.When the receiving interface sends an advertisement to the sender, the
advertisement is delivered directly into one of these interface buffers and the sending interface is
notified of this arrival by the OFED stack. Since the receiving interface should never send more
advertisements than it has localrecv credits, and since the sending interface has posted one
receive buffer for each of its localsend credits, no advertisements should ever be lost for lack of
a buffer when they arrive on the sending side.

6.3. Matchingadvertisements and receives

Each EXS interface keeps track of advertisements it has received and exs send() operations
that its sending user has started.Whenever the user starts anexs send() operation, the EXS
interface looks for an already received advertisement to match it with.Similarly, whenever an

March 28, 2013 Russell and MacArthur Page 16



Overview of UNH EXS 1.3.4 for Programmers

advertisement is received from the remote receiver, the receiving interface looks for an already
startedexs send()to match it with. Matching occurs in the manner already described in section
5.4. Thesending interface then issues an RDMAWRITE WITH IMM operation to its local
CA (via the OFED stack) in order to actually transfer data into the user’s buffer on the receiving
side (as indicated in the advertisement) directly from the user’s buffer on the sending side (as
indicated in theexs send()) without any extra copying or CPU intervention on either side.This
RDMA WRITE WITH IMM operation is transparent to the user on both sides of a connection.

When the receiving interface is notified by its receiving CA (via the OFED stack) that a
remotely issued RDMAWRITE WITH IMM operation has completed, it will do two things.

(1) It uses the “immediate” value supplied in the local RDMAWRITE WITH IMM com-
pletion to locate the corresponding advertisement previously issued by that receiver and
posts the receiver’s completion event to tell the receiving user that itsexs recv() has
completed, and to convey the results to the receiving user via theexs ev ent t structure.

(2) It increments it’s local recv credits, and a new exs recv() operation may commence
using this newly available credit.

When the sending interface is notified by its sending CA (via the OFED stack) that the
locally issued RDMAWRITE WITH IMM operation has completed, it also does two things.

(1) It posts the sender’s completion event to tell the sending user that itsexs send() has
completed and to convey the results to the sending user via theexs ev ent t structure.

(2) It increments its localsend credits for this connection, and a new exs send() operation
may commence using this newly available credit.

Clearly this credit mechanism requires each EXS interface to allocate some hidden, internal
buffers for exchanging advertisements. However, these buffers and advertisements are small,
since they are used only to send and receive a limited amount of control information, not an
unlimited amount of user data. Indeed, these buffers are small enough to be embedded in inter-
nal control blocks that contain additional information needed locally by the EXS interface.

6.4. Numberof internal buffers allocated

Using the mechanism discussed in the next section, a user can set the local values to use
when negotiating the initialsend credits andrecv credits values. Therefore,it is important for
the user to understand how the EXS interface uses these values to allocate its internal buffers.
The receiving interface needs two control blocks for each localrecv credit it has initially nego-
tiated with the sending interface: one for sending an advertisement, and one for receiving the cor-
responding remotely issued RDMAWRITE WITH IMM completion. The sending interface
also needs two control blocks for each localsend credit that it has negotiated with the receiver:
one for keeping track of waiting exs send() operations that have been started but for which no
advertisement has been received yet, and one for receiving an advertisement. However, one extra
control block is allocated for each localsend credit to ensure that receive buffers are always
posted regardless of the inevitable time delays between sending or receiving a message and being
notified of the completion of that operation (at which time a control block can be reused).

March 28, 2013 Russell and MacArthur Page 17



Overview of UNH EXS 1.3.4 for Programmers

7. Tuning the UNH EXS interface

One of the differences between the UNH EXS interface and the ES-API is an additional
mechanism by which a user can “tune” some aspects of the EXS interface in order to increase
performance for a particular application. The user does this through the use of:

result = exs fcntl(fd, command, argument);

The value of thefd parameter identifies the socket to be tuned, the value of thecommand
parameter indicates what the user wants to do to the socket, and the value of theargument
parameter depends on thecommand. This is a synchronous operation, so there is no event asso-
ciated with its completion. The value returned inresult will also depend on the command,
although for all commands it will be -1 if there was an error of some sort, in which case the error
code is stored in the globalerrno.

7.1. Credit negotiation

As previously discussed in section 6, the credit value used to control the flow of data in
EXS is negotiated at the time a new connection is established. The value used in this negotiation
can be set by the user through the use of theexs fcntl () function prior to theexs connect() and
exs accept() calls on thefd parameter. When the value of thecommand parameter to the
exs fcntl () function isEXS F SETFLOWCONTROLCREDITS , the EXS interface will use
the value of theargument parameter as the local value to be used in the negotiation of the local
send credits and recv credits. The default value is 32. In previous versions, 32 was also the
maximum acceptable value, but this maximum has been removed as of version 1.3.0.Negotia-
tion occurs as part of connection establishment, and the result is the minimum value supplied by
either side.This command parameter value cannot be used in anexs fcntl () call on an estab-
lished connection.The result returned by a successfulexs fcntl () call is the old value of the cor-
responding local credit value.

When the value of thecommand parameter to theexs fcntl () function isEXS F GET-
FLOWCONTROLCREDITS , the result returned by theexs fcntl () depends on whether or not
the connection has been established.If exs fcntl () is called with thiscommandparameter value
prior to a successful call toexs connect() or exs accept() on the fd parameter, the value
returned will be the local value used in a future negotiation on that connection. If it is called
after a connection was successfully established, the value returned will be the local value that
resulted from the negotiation at the time the connection was established.Note that this return
value is not the dynamically varying credit value used to control the flow on the connection, but
the negotiated limit on that credit value.

7.2. Smallunregistered packets

Because of the overhead involved in dynamically registering and unregistering memory (see
section 8), it may be faster to send and receive small amounts of data by having the EXS library
simply copy the data into/out of preregistered library buffers. Thus,in SOCK SEQPACKET
mode, UNH EXS supports copying unregistered small packets. Thedefinition of a “small”
packet can be controlled through the use of theEXS F SETSPMAXSIZE value of thecom-
mand parameter to theexs fcntl () function, in which case the value of theargument parameter
should be the value to be used in the negotiation of the definition of “small”. The default value is

March 28, 2013 Russell and MacArthur Page 18



Overview of UNH EXS 1.3.4 for Programmers

0. Negotiation occurs as part of connection establishment, and the result is the minimum value
supplied by either side.This commandparameter value cannot be used in anexs fcntl () call on
an established connection. The result returned by a successfulexs fcntl () call is the old value of
the corresponding local small packet max size.

Setting a positive value forEXS F SETSPMAXSIZE effects the operation ofexs send()
and exs recv() called with a value ofEXS MHANDLE UNREGISTERED for the required
mhandle parameter. If the value of the requiredlength parameter is less than or equal to the
small packet max size, then rather than dynamically registering and unregistering the data sup-
plied in the function call, the data is copied into a preregistered library buffer onexs send() or
copied out of a preregistered library buffer onexs recv().

When the value of thecommandparameter to theexs fcntl () function isEXS F GETSP-
MAXSIZE , the result returned by theexs fcntl () depends on whether or not the connection has
been established.If exs fcntl () is called with thiscommandparameter value prior to a success-
ful call to exs connect() or exs accept() on thefd parameter, the value returned will be the local
value used in a future negotiation on that connection.If it is called after a connection was suc-
cessfully established, the value returned will be the local value that resulted from the negotiation
at the time the connection was established.

In SOCK STREAM mode, this is not supported since the stream mode does its own
buffering by default.

7.3. Usingthe hardware inline feature on exs send()

Many RDMA interface cards support the optional “inline” feature, which allows the card to
enqueue a copy of small amounts of data as part of the metadata it enqueues on the send queue at
the time it starts anexs send() operation. The effect of this is to make the transfer slightly faster
(i.e., to exhibit lower latency), because the data is already on the interface card at the time it actu-
ally moves data onto the wire, so there is no need to involve the memory bus in the transfer itself
(the memory bus was involved at the time theexs send() was enqueued).

The definition of “small amounts” of data can be controlled to some extent through the use
of the EXS_F_SETINLINEMAXSIZE value of thecommand parameter to theexs_fcntl()
function, in which case the value of theargument parameter should be the definition of “small
amounts”. Thedefault value is the largest value acceptable to the interface card.Negotiation
occurs as part of connection establishment, and is explained next. This command parameter
value cannot be used in anexs fcntl () call on an established connection. The result returned by
a successfulexs fcntl () call is the old value of the corresponding local inline max size.

The user does not have complete control over this value, because this is an optional feature
of RDMA interface cards, and the maximum size possible depends on the particular card used.
Therefore, if the user uses theEXS_F_SETINLINEMAXSIZE value in thecommandparame-
ter to theexs_fcntl() function, then the user’s value of theargument parameter is only a starting
point for the EXS library to negotiate with the local interface card to set the maximum inline size
to use. If the user’s value is acceptable to the local interface card, then that is the value used.If
the user’s value is not acceptable, then the EXS library will silently find and use the largest value
acceptable to the interface card but smaller than the user’s value.

March 28, 2013 Russell and MacArthur Page 19



Overview of UNH EXS 1.3.4 for Programmers

Note that the scope of the maximum inline size is the local interface card — it is not negoti-
ated with the remote side when a connection is established by anexs_connect() or exs_accept(),
because the interface card on the remote side could be different from the local interface card, and
might support a different maximum value. Inany case, maximum inline size is only utilized by
the EXS library on anexs_send(), since it only effects the queueing performed locally when this
function is called — it has no effect on anexs_recv() or on data transferred on the wire.

Note also that the maximum inline size is independent of the small packet max size.The
maximum inline size is a hardware option that improves the latency of exs_send() operations,
regardless of whether or not themhandle parameter is given as EXS MHANDLE UNREGIS-
TERED in the exs_send(). Thereforethe EXS library will use it by default on all calls to
exs_send() in which the value of thesend length parameter is less than or equal to the maxi-
mum inline size.(Obviously if the user sets this maximum to 0, this feature will not be used.)
The small packet max size is a software option that improves the latency of exs_send(), but only
when themhandle parameter is given as EXS MHANDLE UNREGISTERED. The EXS
library uses will use it only on these calls, and only if the value of thesend length parameter is
less than or equal to the small packet max size.

When the value of thecommand parameter to theexs fcntl () function is
EXS F GETINLINEMAXSIZE , the result returned by theexs fcntl () depends on whether or
not the connection has been established.If exs fcntl () is called with thiscommand parameter
value prior to a successful call toexs connect() or exs accept() on thefd parameter, the value
returned will be the local value used in a future negotiation with the local interface when a con-
nection is established.If it is called after a connection was successfully established, the value
returned will be the local value that resulted from the negotiation at the time the connection was
established.

7.4. Pinningthe EXS completion thread to a CPU

Because of the asynchronous nature of its operation, the EXS library utilizes a “completion
thread”. Oneof the fine-tuning options available to users is the ability to pin this completion
thread to a particular CPU. If the user pins his/her threads to different CPUs, the execution load
will be distributed across a multi-core platform, which should give better performance. If thread
pinning is not performed, then the completion thread can be dynamically assigned to various
CPUs by the kernel scheduler.

Completion thread pinning is controlled through the use of theEXS F SET-
COMPTHREADCPU value of thecommand parameter to theexs fcntl () function, in which
case the value of theargument parameter should be the number (starting at 0) of the CPU to
which the completion thread for the connection indicated by thefd parameter should be pinned.
The default value is INT_MAX, which means that the completion thread is NOT pinned to any
CPU. Pinningis done at the time a connection is established, and may be changed dynamically
after connection establishment.The result returned by a successfulexs fcntl () call is the old
CPU number. If this return value is INT_MAX, it means the completion thread was not previ-
ously pinned to any CPU, and can be dynamically assigned to CPUs by the kernel scheduler.

March 28, 2013 Russell and MacArthur Page 20



Overview of UNH EXS 1.3.4 for Programmers

7.5. Busypolling for completions

By default, the UNH EXS completion thread releases the CPU whenever it has no work to
do in order to not consume CPU cycles unnecessarily. Howev er, this requires kernel interven-
tion, both to release the CPU and again when the thread needs to be reawakened, and this can
add several microseconds overhead to the performance of an EXS transaction.To avoid this, the
user can select the “busy polling” option for a completion thread. This option means that the
completion thread will react faster to the completion of transactions, which usually produces
lower latency. But it also means the completion thread will never giv e up the CPU, so that it will
consume 100% of the available cycles on a CPU.

Busy polling in the completion thread of the connection indicated by thefd is controlled
through the use of theEXS F SETFD value of thecommandparameter to theexs fcntl () func-
tion, in which case the value of theargument parameter should be a bit-mask containing the
EXS FD BUSYPOLL flag. Thechoice used by a completion thread is determined when that
thread is created as part of connection establishment.By default, this flag is not set, which
means that busy polling is not employed by the completion thread for anfd. Theargument bit-
mask containing theEXS FD BUSYPOLL flag cannot be used in anexs fcntl () call on an
established connection. The result returned by a successfulexs fcntl () call is the old flags bit-
mask.

When the value of thecommandparameter to theexs fcntl () function isEXS F GETFD,
the result returned by theexs fcntl () is the current flags value at that time. The value of the
argument parameter is ignored.

The proper way to set theEXS FD BUSYPOLL flag is to:

call exs fcntl () with theEXS F GETFD value for thecommandparameter,

OR the result returned by thatexs fcntl () call with theEXS FD BUSYPOLL
flag,

use that result of that OR operation as theargument parameter in a call to
exs fcntl () with theEXS F SETFD value for thecommandparameter.

Doing it this way ensures that only a single flag value (in this case, theEXS FD BUSYPOLL
flag) gets changed.

7.6. Stream receive buffer

As mentioned earlier in section 4.1, version 1.3.0 introduces an intermediate receive buffer
for SOCK STREAM sockets. Thisbuffer is meant to decrease latency for long-distance com-
munications that is introduced by the advertisement mechanism. When no advertisements are
pending, the sender will write data into this intermediate buffer instead of waiting for an adver-
tisement. exs recv() will return data from this buffer whenever it contains data, and will send
advertisements only if there is no data in the buffer. As of version 1.3.2, the receiver will send
advertisements even if the MSG WAITALL flag is not present.The sender will make a best
effort to write directly to the user-supplied memory area whenever it gets an advertisement.
However, it is possible that the sender had already written the data to the intermediate buffer
before it received the advertisement, in which case it will ignore the advertisement. Theactual

March 28, 2013 Russell and MacArthur Page 21



Overview of UNH EXS 1.3.4 for Programmers

algorithm by which this occurs is much more complex than this simple overview implies, but a
full discussion of the algorithm is outside the scope of this document.

The intermediate receive buffer defaults to 3 Gigabytes in size, and this is also its maximum
size due to limitations of the underlying OFED stack. There is a fallback mechanism to decrease
the size if the requested size cannot be allocated.However, due to the way that memory alloca-
tion works in Linux and the fact that this intermediate buffer must be pinned in virtual memory,
this fallback mechanism is unlikely to work in practice if the available physical memory is less
than the desired buffer size.

To decrease the size of the intermediate receive buffer, call exs fcntl () with thecommand
parameter set toEXS F SETSTREAMBUFSIZE and theargument parameter set to the
desired size in bytes. This parameter must be set on the client side of the connection before call-
ing exs connect() and on the server side before callingexs accept()for the first time. Note that
as of UNH EXS 1.3.4, this will change the size of the remote receive buffer on each side inde-
pendently. That is, setting the size on the server side will change the size of the receive buffer on
the server side only, and setting the size on the client side will change the size of the receive
buffer on the client side only. The similarEXS F GETSTREAMBUFSIZE may be used at
any time to determine the actual size of the intermediate receive buffer, which may be less than
the requested size due to memory constraints.

In many cases, the intermediate receive buffer will increase performance dramatically; how-
ev er, there may be some use cases where this extra buffer is unwanted. To turn this feature off
completely, set the desired stream buffer size to 0 with theEXS F SETSTREAMBUFSIZE
parameter. Note that currently, this also sets theEXS FD NODELAY flag for compatibility
with previous releases.

In the future, we plan to additionally support a send-side Nagle buffer for small packets.
The size of this buffer would then be controllable via theEXS F SETSPMAXSIZE command
to theexs fcntl () function mentioned in the previous section.

8. Registered and unregistered memory

The EXS interface is designed to transfer data using direct memory-to-memory transfers
with no extra copying. This requires that memory buffers involved at each end of the RDMA
transmission be “registered” with the CA on each end prior to one side issuing theexs send()
and the other side issuing theexs recv(). This normally requires the user to explicitly register
and deregister the memory used in EXS transfers, on both the sending and receiving sides (see
section 8.1).However, it is possible for a user to implicitly register and deregister the memory
used on either the sending or receiving side of an EXS transfer, or both (see section 8.2).

8.1. Explicit memory registration and deregistration

A user explicitly registers memory using:

mhandle = exsmregister(address, length, flags);

whereaddresspoints to an area of memory containinglength bytes to be registered. Thevalue
of flags is usuallyEXS_ACCESS_ALL to grant read and write access to both the local and
remote ends of a connection. Note that prior to callingexs mregister(), the memory ataddress
must already be allocated by the user, either statically or dynamically.

March 28, 2013 Russell and MacArthur Page 22



Overview of UNH EXS 1.3.4 for Programmers

If the exs mregister() is successful, the value returned inmhandle will be an opaque mem-
ory handle that can be used as a parameter to anexs send() when the send buffer is located any-
where within this area of memory, and/or as a parameter to anexs recv() when the receive buffer
is located anywhere within this area of memory. If theexs mregister() fails for any reason, the
value returned inmhandle will be the constant EXSMHANDLE INVALID and an error code
will be stored in the globalerrno.

Note that once anmhandle has been successfully registered, it can be used repeatedly in
subsequent calls toexs send() and/orexs recv() that have buffers in that memory area.Only
when a user is completely finished using an explicitly registered area of memory for I/O does he
or she deregister it using:

result = exs mderegister(mhandle, flags);

wheremhandle must be the value returned by a previously successful call toexs mregister(),
and the value offlagsmust be 0 since no flags are currently supported forexs mderegister().

8.2. Implicit memory registration and deregistration:

The EXS standard provides a simple mechanism to implicitly register and deregister mem-
ory buffers used inexs send() and exs recv() operations.To do this, wherever an mhandle
parameter is required in an EXS function call, the user simply supplies the constant
EXS MHANDLE UNREGISTERED to indicate that the user has not explicitly registered the
buffer parameter specified in that function call.Given this value, the EXS interface will dynami-
cally register and deregister the buffer as necessary. Of course this adds considerable overhead
interface to dynamically register and deregister memory as part of anexs send() or exs recv()
call, but if an area of memory is used for I/O only once or twice, rather than repeatedly, the user
may find it more convenient to let the EXS interface perform the registration required by the CA
rather than coding out explicit calls toexs mregister() andexs mderegister().

Note that memory registration applies only to the process calling theexs mregister() func-
tion (and to threads attached to that process). If a process forks a child process, that child does
not inherit any of the parent’s memory registrations.

9. Synchronous I/O

The EXS interface is designed to transfer data asynchronously, as already described in sec-
tion 5. However, some applications have no need for asynchronous I/O, although they still want
to use RDMA. To accommodate this type of application, the user can simply supply the value
EXS BLOCK in the flags parameter toexs accept(), exs connect(), exs close(), exs send(),
or exs recv(). When this flag is present,qhandle and ahandle parameters required in these
EXS function calls are ignored by the EXS interface and can be NULL.TheEXS BLOCK flag
indicates that the user wants this function to both start an operation and wait for its completion.
If the result returned by this function is -1, the error code may apply either to the start phase or
the completion phase — the user has to somehow determine which. Otherwise, the result is a
value taken from one of the fields in the successful completion event (which is hidden from the
user by the EXS interface). For anexs send() or exs recv(), the result will be the number of
bytes actually transmitted.For an exs accept() it will be the fd of the new connection. For an
exs connect() or exs close() it will be 0.

March 28, 2013 Russell and MacArthur Page 23



Overview of UNH EXS 1.3.4 for Programmers

For convenience when the user wishes to both block and use unregistered memory in a send
or receive operation, two additional functions have been provided: exs write () andexs read().
These are described below in terms of theirexs send() andexs recv() equivalents.

9.1. Sendingdata synchronously

A user sends registered data synchronously by using:

result = exs send(fd, write buffer, write length, EXS BLOCK, NULL, NULL,
mhandle);

or the more convenient:

result = exs blocking send(fd, write buffer, write length, send flags, mhandle);

in which the user does not have to supply the valueEXS BLOCK in thesend flagsparameter.

A user sends unregistered data synchronously by using either:

result = exs send(fd, write buffer, write length, EXS BLOCK, NULL, NULL,
EXS MHANDLE UNREGISTERED);

or the more convenient:

result = exs write(fd, write buffer, write length);

In all these situations,fd identifies the EXS connection, and the user has filledwrite buffer
with write length bytes of data prior to the call. When using these functions, the EXS interface
will automatically wait for completion of the data transfer before returning. If the transfer is suc-
cessful, the value returned inresult will be the number of bytes actually written.Otherwise, the
value returned inresult will be -1 to indicate that there was an error of some sort, in which case
the error code is stored in the globalerrno.

9.2. Receiving data synchronously

A user receives registered data synchronously by using:

result = exs recv(fd, read buffer, max length, EXS BLOCK, NULL, NULL,
mhandle);

or the more convenient:

result = exs blocking recv(fd, read buffer, max length, recv flags, mhandle);

in which the user does not have to supply the valueEXS BLOCK in therecv flagsparameter.

A user receives unregistered data synchronously by using either:

result = exs recv(fd, read buffer, max length, EXS BLOCK, NULL, NULL,
EXS MHANDLE UNREGISTERED);

or the more convenient:

result = exs read(fd, read buffer, max length);

In all these situations,fd identifies the EXS connection, and the user has reserved a
read buffer capable of holdingmax length bytes of data.When using these functions, the
EXS interface will automatically wait for completion of the data transfer before returning. If the
transfer is successful, the value returned inresult will be the number of bytes actually read.

March 28, 2013 Russell and MacArthur Page 24



Overview of UNH EXS 1.3.4 for Programmers

Otherwise, the value returned inresult will be -1 to indicate that there was an error of some sort,
in which case the error code is stored in the globalerrno.

9.3. Establishingan EXS client connection synchronously

TheEXS BLOCK constant can also be used as the value of theflagsparameter in the the
exs connect() function so that it will operate synchronously rather than asynchronously. When
this flag value is present, the value of theqhandle andahandle parameters to this function are
ignored by the EXS interface, and can be NULL.For convenience and similarity to the equiv-
alent functions for normal sockets, the following synchronous function is also provided:

result = exs blocking connect(fd, server address, server addrlen);

where the parameters are identical to those for the corresponding “normal” TCP/IP socket con-
nect() function.

9.4. Acceptingconnections on the server synchronously

TheEXS BLOCK constant can also be used as the value of theflagsparameter in the the
exs accept() function so that it will operate synchronously rather than asynchronously. When
this flag value is present, the value of theqhandle parameter to this function is ignored by the
EXS interface, and can be NULL.For convenience and similarity to the equivalent function for
normal sockets, the following synchronous function is also provided:

result = exs blocking accept(fd, peer address, &peer addrlen);

exs blocking accept() blocks until a remote client connects, at which time theresult it
returns will be thefd for the new connection to the remote client.No exs ev ent t structure is
generated for the user, so the other fields in that structure are not available to the user.

It is important to note that the second and third parameters toexs blocking accept() differ
from the corresponding parameters toexs accept() (see section 4.3.2).Instead of giving an
address vector array of structures of typeexs acceptaddrand acount parameter indicating the
number of elements in the array, exs blocking accept() takes as itspeer addressparameter a
pointer to a structure of typestruct sockaddr into which the IPv4/IPv6 address and port number
of a new remote client will be stored by the EXS interface. Thepeer addrlen parameter is the
number of bytes allocated by the user to the structure pointed to bypeer address. These two
parameters toexs blocking accept() are identical to the first two fields in an element of the
address vector parameter toexs accept(), and make the 3 parameters toexs block-
ing accept() identical to the 3 parameters of the “normal” TCP/IP socket functionaccept().

Note also that theEXS BLOCK flag does NOT hav eto be included in theaccept flags
parameter toexs blocking accept().

9.5. ClosingEXS connections synchronously

An EXS connection of any type can be closed synchronously by using either:

result = exs close(fd, EXS BLOCK, NULL, NULL);

or the more convenient:

result = exs blocking close(fd);

March 28, 2013 Russell and MacArthur Page 25



Overview of UNH EXS 1.3.4 for Programmers

wherefd indicates the connection to be closed.

10. Converting programs from using normal sockets to using EXS sockets

The availability in EXS of both implicit memory registration and synchronous I/O means
that users who wish to convert existing programs using “normal” sockets (see section 10.1) to
full use of EXS sockets have a choice of how to proceed. They can start by using EXS sockets in
synchronous mode and use only implicit memory registration (see section 10.2). Such usage is
almost identical with the use of “normal” sockets (essentially just the function names change),
but it does give the user access to the RDMA hardware. Oncethat is working, the user can
choose between converting first to using explicit memory registration while continuing to use
synchronous mode (see section 10.3), or converting first to using asynchronous mode while con-
tinuing to use implicit memory registration (see section 10.4). Once that step has been finished
and is working properly, the other step can be taken to give fully asynchronous operation with
explicitly registered memory (see section 10.5).

10.1. Clientusing normal sockets

The following gives an example of the complete conversion just mentioned, starting with
the general outline for a client that uses “normal” sockets (and therefore cannot use RDMA hard-
ware):

fd = socket(PFINET, SOCK STREAM, 0);
connect(fd, serveraddress, serveraddrlen);
loop

write(fd, out buffer, out bytes);
in bytes = read(fd, inbuffer, maxbytes);

endloop;
close(fd);

10.2. Clientusing EXS sockets in synchronous mode with implicit memory registration

The first conversion step mentioned above giv es an almost identical program that uses syn-
chronous mode and implicit memory registration so that it can therefore use RDMA hardware.
Note that this program is identical to the normal program except for the introduction of the one-
time call toexs init () at the start, and the name changes of the various socket functions.

exs init(EXS VERSION);
fd = exs socket(PFINET, SOCK STREAM, 0);
exs blocking connect(fd, serveraddress, serveraddrlen);
loop

exs write(fd, out buffer, out bytes);
in bytes =exs read(fd, in buffer, maxbytes);

endloop;
exs blocking close(fd);

March 28, 2013 Russell and MacArthur Page 26



Overview of UNH EXS 1.3.4 for Programmers

10.3. Clientusing EXS sockets in synchronous mode with explicit memory registration

We now hav ea choice of which feature of EXS to apply first.Let’s choose to register mem-
ory before we go to asynchronous operation (so we will continue to use only EXS functions that
are “blocking”). The general outline for this version of the client would be:

exs init(EXS VERSION);
fd = exs socket(PFINET, SOCK STREAM, 0);
exs blocking connect(fd, serveraddress, serveraddrlen);
in mhandle = exsmregister(in buffer, max in bytes, flags);
out mhandle = exsmregister(out buffer, max out bytes, flags);
loop

exs blocking send(fd, outbuffer, out bytes, 0, out mhandle);
in bytes =exs blocking recv(fd, in buffer, in bytes, 0, in mhandle);

endloop;
exs mderegister(out mhandle);
exs mderegister(in mhandle);
exs blocking close(fd);

March 28, 2013 Russell and MacArthur Page 27



Overview of UNH EXS 1.3.4 for Programmers

10.4. Clientusing EXS sockets in asynchronous mode with implicit memory registration

Alternatively, we could choose to utilize EXS asynchronous operations before registering
memory. The general outline for this version of the client would be:

exs init(EXS VERSION);
fd = exs socket(PFINET, SOCK STREAM, 0);
management qhandle = exsqcreate(1);
exs connect(fd, serveraddress, serveraddrlen, 0, NULL, management qhandle,

NULL );
/*---- perform computation in parallel with EXS activity ----*/
exs qdequeue(managementqhandle, &management ev ent, 1, NULL);
in qhandle = exsqcreate(3);
out qhandle = exsqcreate(3);
loop

exs send(fd, outbuffer, out bytes, 0, out qhandle,
NULL, EXS MHANDLE UNREGISTERED);

/*---- perform computation in parallel with data transfer ----*/
exs qdequeue(out qhandle, &out ev ent, 1, NULL);
exs recv(fd, in buffer, max in bytes, 0, in qhandle,

NULL, EXS MHANDLE UNREGISTERED);
/*---- perform computation in parallel with data transfer ----*/
exs qdequeue(in qhandle, &in ev ent, 1, NULL);
in bytes = in ev ent.exs evt union.exs evt xfer.exs evt length;

endloop;
exs qdelete(out qhandle);
exs qdelete(in qhandle);
exs close(fd, 0, management qhandle, NULL);
/*---- perform computation in parallel with EXS activity ----*/
exs qdequeue(managementqhandle, &management ev ent, 1, NULL);
exs qdelete(managementqhandle);

March 28, 2013 Russell and MacArthur Page 28



Overview of UNH EXS 1.3.4 for Programmers

10.5. Clientusing EXS sockets in asynchronous mode with explicit memory registration

Our final step is to combine the changes made independently in the previous two steps, giv-
ing us a program that uses both EXS registered memory and EXS asynchronous I/O for RDMA
transfers:

exs init(EXS VERSION);
fd = exs socket(PFINET, SOCK STREAM, 0);
managementqhandle = exsqcreate(1);
exs connect(fd, serveraddress, serveraddrlen, 0, NULL, managementqhandle,

NULL);
/*---- perform computation in parallel with EXS activity ----*/
exs qdequeue(managementqhandle, &managementev ent, 1, NULL);
in mhandle = exsmregister(inbuffer, max in bytes, flags);
out mhandle = exsmregister(outbuffer, max out bytes, flags);
in qhandle = exsqcreate(3);
out qhandle = exsqcreate(3);
loop

exs send(fd, outbuffer, out bytes, 0, outqhandle, NULL, outmhandle);
/*---- perform computation in parallel with data transfer ----*/
exs qdequeue(outqhandle, &outev ent, 1, NULL);
exs recv(fd, in buffer, max in bytes, 0, inqhandle, NULL, inmhandle);
/*---- perform computation in parallel with data transfer ----*/
exs qdequeue(inqhandle, &in ev ent, 1, NULL);
in bytes = in ev ent.exs evt union.exsevt xfer.exs evt length;

endloop;
exs qdelete(outqhandle);
exs qdelete(inqhandle);
exs mderegister(outmhandle);
exs mderegister(inmhandle);
exs close(fd, 0, managementqhandle, NULL);
/*---- perform computation in parallel with EXS activity ----*/
exs qdequeue(managementqhandle, &managementev ent, 1, NULL);
exs qdelete(managementqhandle);

This program runs, but as it stands there isn’t much parallel activity between the asyn-
chronous EXS activity and the user thread, which should perform parallel computation in the
places now marked in the code only by appropriate comments.To take advantage of the poten-
tial parallelism, this program needs to be modified to perform useful computation between the
call of anexs close() or anexs connect() or anexs send() or anexs recv() that starts an EXS
operation and the correspondingexs qdequeue() that waits for the completion of the EXS oper-
ation.

March 28, 2013 Russell and MacArthur Page 29



Overview of UNH EXS 1.3.4 for Programmers

11. Statusof UNH EXS 1.3.4

11.1. Comparisonwith the Extended Sockets API (ES-API) Issue 1.0 Specification

UNH EXS section
status discussed

UNH EXS function origin

exs accept() ES-APIstandard implemented 4.3.2
exs bind() non-standard implemented 4.3.1
exs blocking accept() non-standard implemented 9.4
exs blocking close() non-standard implemented 9.5
exs blocking connect() non-standard implemented 9.3
exs blocking recv() non-standard implemented 9.1
exs blocking send() non-standard implemented 9.1
exs cancel() ES-APIstandard notimplemented
exs close() non-standard implemented 4.4
exs connect() ES-APIstandard implemented 4.2
exs init() ES-APIstandard implemented 3.1
exs fcntl() non-standard implemented 7
exs listen() non-standard implemented 4.3.1
exs mderegister() ES-APIstandard implemented 8.1
exs mmodify() ES-APIstandard notimplemented
exs mregister() ES-APIstandard implemented 8.1
exs poll() ES-APIstandard notimplemented
exs qcreate() ES-APIstandard implemented 2.1.1
exs qdelete() ES-APIstandard implemented 2.1.2
exs qdequeue() ES-APIstandard implemented 2.1.3
exs qmodifiy() ES-APIstandard notimplemented
exs qstatus() ES-APIstandard notimplemented
exs read() non-standard implemented 9.2
exs recv() ES-APIstandard implemented 5.2
exs recvmsg() ES-APIstandard notimplemented
exs send() ES-APIstandard implemented 5.1
exs sendfile() ES-APIstandard notimplemented
exs sendmsg() ES-APIstandard notimplemented
exs socket() non-standard implemented 4.1
exs write() non-standard implemented 9.1

March 28, 2013 Russell and MacArthur Page 30



Overview of UNH EXS 1.3.4 for Programmers

11.2. Modificationsto the ES-API standard in the UNH EXS implementation

11.2.1. exs.hheader file

The definitions of all symbols, structures, and function prototypes introduced by UNH EXS
are found in the header file “exs.h”, not “sys/exs.h” as stated in the ES-API standard.Therefore,
each “.c” file using UNH EXS should have the following line after all other “include” directives
at the beginning of the compilation unit:

#include <exs.h>

11.2.2. exsaccept()

The EXS BLOCK flag has been added in UNH-EXS to indicate that the user wants this
function to both start an operation and wait for its completion. When this flag is present, the
value of theqhandle parameter required in theexs accept() function call is ignored by the EXS
interface and can be NULL. The result returned by a successfulexs accept() with the
EXS BLOCK flag is thefd of the new connection to a remote client.

11.2.3. exsclose()

The EXS BLOCK flag has been added in UNH-EXS to indicate that the user wants this
function to both start an operation and wait for its completion.When this flag is present, the val-
ues of theqhandle andahandleparameters that are required in theexs close() function call are
ignored by the EXS interface and can be NULL.

11.2.4. exsconnect()

A non-NULL value for thetimeout parameter, allowed in the ES-API standard, is not yet
supported in UNH-EXS.

The EXS BLOCK flag has been added in UNH-EXS to indicate that the user wants this
function to both start an operation and wait for its completion.When this flag is present, the val-
ues of theqhandle andahandle parameters that are required in theexs connect() function call
are ignored by the EXS interface and can be NULL.

11.2.5. exsrecv()

The ES-API standard MSGPEEK and MSGOOB flag values are not supported in UNH-
EXS.

TheEXS DONTWAIT flag is ignored as of UNH-EXS 1.3.1.

The EXS CREDIT WAIT flag has been added in UNH-EXS 1.3.2 to indicate that the
user wants this function to wait until a credit is available, but otherwise run asynchronously.

The EXS BLOCK flag has been added in UNH-EXS to indicate that the user wants this
function to both start an operation and wait for its completion. When this flag is present, the val-
ues of theqhandle andahandleparameters that are required in theexs recv() function call are
ignored by the EXS interface and can be NULL.

TheEXS UNSIGNALED flag has been added in UNH-EXS to indicate that the user does
not want the completion of an asynchronousexs recv() to generate an event. It is ignored when
the EXS BLOCK flag is present.When EXS UNSIGNALED is present, the value of the

March 28, 2013 Russell and MacArthur Page 31



Overview of UNH EXS 1.3.4 for Programmers

qhandle parameter that is required in theexs recv() function call may be NULL, in which case
no event is generated upon the completion of theexs recv(). However, if the value of theqhan-
dle parameter is not NULL, an event will be generated in the event queue ONLY i f the operation
did NOT complete successfully — no event is generated if the operation completed successfully.

11.2.6. exssend()

The ES-API standard MSGEOR and MSGOOB flags are not supported in UNH-EXS.

TheEXS DONTWAIT flag is ignored as of UNH-EXS 1.3.1.

The EXS CREDIT WAIT flag has been added in UNH-EXS 1.3.2 to indicate that the
user wants this function to wait until a credit is available, but otherwise run asynchronously.

The EXS BLOCK flag has been added in UNH-EXS to indicate that the user wants this
function to both start an operation and wait for its completion.When this flag is present, the val-
ues of theqhandle andahandleparameters that are required in theexs send() function call are
ignored by the EXS interface and can be NULL.

TheEXS UNSIGNALED flag has been added in UNH-EXS to indicate that the user does
not want the completion of an asynchronousexs send() to generate an event. It is ignored when
the EXS BLOCK flag is present.When EXS UNSIGNALED is present, the value of the
qhandle parameter that is required in theexs send() function call may be NULL, in which case
no event is generated upon the completion of theexs send(). However, if the value of theqhan-
dle parameter is not NULL, an event will be generated in the event queue ONLY if t he operation
did NOT complete successfully — no event is generated if the operation completed successfully.

11.3. Known deficiencies

11.3.1. thread cancellation

At the present time, the UNH EXS library functions are NOT cancellation safe, because
there are NO cancellation cleanup handlers implemented for any of them. Usersare therefore
advised NOT to call pthread_cancel() for any of their threads when they might be executing in
code using the UNH EXS library.

March 28, 2013 Russell and MacArthur Page 32


