

The University of New Hampshire InterOperability Laboratory (UNH-IOL)

IoT: Evolving Networks to Meet the Opportunity

www.iol.unh.edu

IoT Devices

- •The number of devices currently online is about 15 billon.
- •Estimates for the number of devices on a network by 2020 is between 50 and 200 billon devices.

 Wearable's, Car, Industrial are all areas of growth for more devices on the network.

Network Load

•Will current networks be able to handle the increase of devices on the network?

Deploying IoT

Current areas that networks will need to be to support the following additional:
Cloud Solutions
Big Data
Device Management

End to End

- •Concept that a IoT device might need to send information to a server in a remote location
 - Example: IoT sensor on shipping crate sends it's location to the Shipping center.

•IP Addressing allows IoT devices to communicate with other device on different link technologies.

• Example: Devices on Wi-Fi, Ethernet, and 5G

- •Currently IPv4 uses NAT to extend the space of networks.
 - The use of multiple NATs is extra complexity in the network.

IPv6

- •128-bit addresses gives enough address space.
- •IPv6 restores the possibility of End-to-End System communication directly.
- Supports Link-Local communication with no need for DHCP service.
- •IPv6 is designed to support additional features such as privacy and security.

Network Management

- •IoT devices increase the amount of data on the network.
- •Utilize network resources to best support the devices on the network.
 - Redirect traffic to parts of the network that under utilized.
- •Users configuring the network in realtime is not an option.

SDN

- •Software Defined Networking (SDN) allows programming of the network.
 - Prococols such as OpenFlow, VXLAN, Cisco ACI.
- •Allows for the network to quickly and easy move the burden of IoT deployments to other parts of the network and eliminate bottlenecks.

9

Rapid Deployment of IoT

- •Networks must support Service Management and Provisioning of IoT devices.
- •Virtualization allows for rapid deployment or can quickly increase the resources available for a service.
- •Provisioning millions of devices by human interaction is unrealistic.

NFV

- •Network Function Virtualization (NFV) is architecture used by service providers.
 - Decouples network functions from hardware and places them in software.
- •Allows for service chaining so that a service provider can properly deploy services.
 - Example: Bandwidth calendar that plans for extra bandwidth when a IoT sensors deliver networking information.

•The evolution of networks in areas such as IPv6, SDN and NFV are vital to the success of IoT.

Contact Information

Timothy Winters

Senior Executive, Software and IP Networking twinters@iol.unh.edu