PMA/PMD for WWDM PHY 10GBASE-LX4 IEEE Draft P802.3ae/D3.2 Clause 53 Presentation

Clause 53 Presentation

UNH INTEROPERABILITY LAB

Outline

- Introduction
- Wave Division Multiplexing Overview
- Clause 53 WWDM PHY
- Conclusion

Clause 53 Presentation

UNH INTEROPERABILITY LAB

Introduction

- 10Gigabit Ethernet offers a serial PHY and a parallel PHY with multiple wavelengths.
- Clause 53 of IEEE Draft P802.3ae/D3.2 defines PMD sublayer and baseband medium for WWDM PHY, type 10GBASE-LX4.

Clause 53 Presentation

UNH INTEROPERABILITY LAB

Introduction

- 4 optical wavelengths, each at 3.125GBaud
- Each wavelength contains 8B/10B encoded data as described in Clause 48
- Compatible with XAUI/XGXS
- Able to run over both single and multimode fiber (SMF, MMF) up to 10km and 300m respectively

Clause 53 Presentation

UNH INTEROPERABILITY LAB

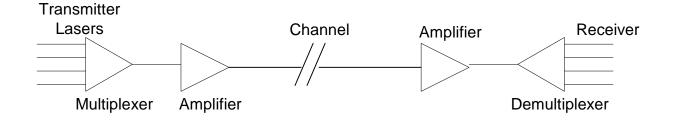
What's Next

- > Introduction
- Wave Division Multiplexing Overview
- > Clause 53 WWDMPFIY
- > Conclusion

Clause 53 Presentation

UNH INTEROPERABILITY LAB

WDM Overview


- WDM (wave division multiplexing)
 - You can also have Dense, Coarse WDM
 - C/D depends on number of wavelengths
- Refers to the (de)multiplexing of multiple wavelengths over a single fiber
- One laser for each wavelength
- Why send one multi-gig stream over a fiber when you can send multiple?

Clause 53 Presentation

UNH INTEROPERABILITY LAB

WWDM Basics

 In General, a WDM system has the following main parts: Transmitter, Receiver, (De)Multiplexer, Amplifier, and Channel.

Clause 53 Presentation

UNH INTEROPERABILITY LAB

Transmitters

- Distributed feedback (DFB) lasers
 1310nm and 1550nm range
- Strict monitoring
 - Use feedback to control laser output
 - Temperature control
- High output power
- One laser for each wavelength

Clause 53 Presentation

UNH INTEROPERABILITY LAB

Amplifiers

• Power amplifiers

– High gain before transmission

- Line amplifier
 - Restore signal to initial state
- Receiver amplifier
 - Recover signal from noise

Clause 53 Presentation

UNH INTEROPERABILITY LAB

Channel

- Long lengths of fiber
 - Attenuation
 - Chromatic dispersion (single mode fibers)
 - Broadening of pulses cause inter-symbol interference
 - This can cause major problems

Clause 53 Presentation

UNH INTEROPERABILITY LAB

Dispersion

- Dispersion is a function of the fiber
- Zero dispersion at 1300 nm
- Dispersion compensation fiber
- Dispersion shifted fiber
- Non-zero dispersion shifted fiber
 Eliminate Four Wave Mixing

Clause 53 Presentation

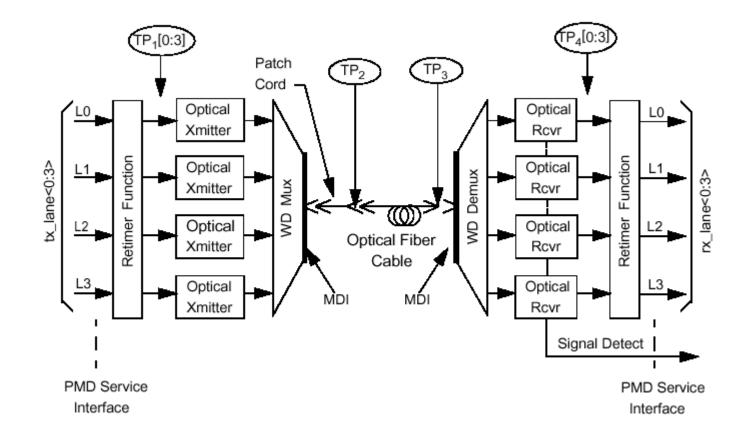
UNH INTEROPERABILITY LAB

Multiplexing/Demultiplexing

- Prisms
- Diffraction Gratings
- Arrayed waveguide grating

Clause 53 Presentation

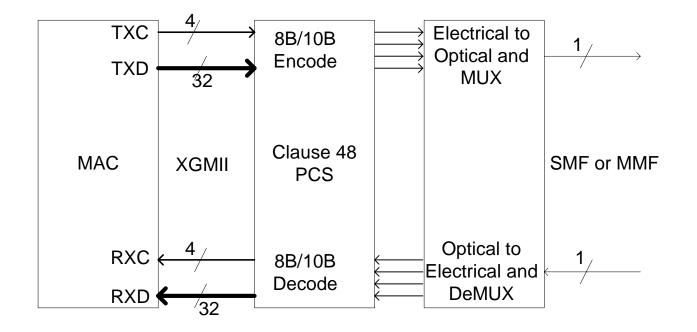
UNH INTEROPERABILITY LAB


What's Next

- > Introduction
- · Wave Division Multiplexing Overview
- Clause 53 WWDM PHY
- > Conclusion

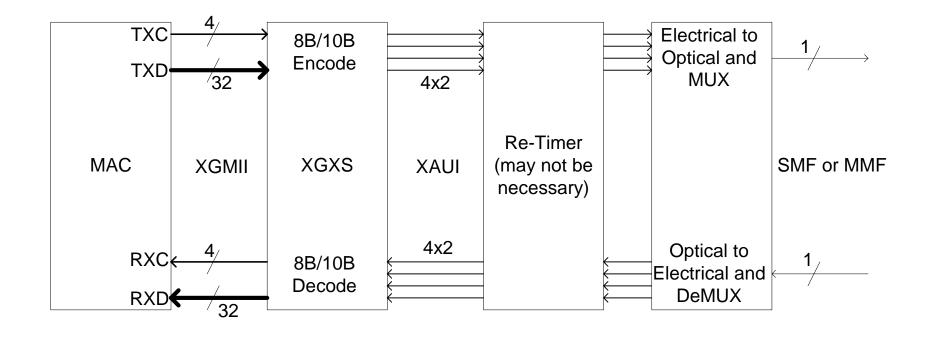
Clause 53 Presentation

UNH INTEROPERABILITY LAB


PMD Block Diagram

Clause 53 Presentation

UNH INTEROPERABILITY LAB


Implementation Example

Clause 53 Presentation

UNH INTEROPERABILITY LAB

Implementation Example

Clause 53 Presentation

UNH INTEROPERABILITY LAB

PMD functions

- PMD Transmit function
 - Convert 4 electronic bit streams, tx_bit[0:3], requested by PMD service interface into four separate optical signal streams.
 - Four optical streams are converted, through WDM, to a single stream delivered to the MDI.

Clause 53 Presentation

UNH INTEROPERABILITY LAB

PMD functions

- PMD Receive function
 - Demultiplex the received optical signal into four separate optical streams.
 - Convert optical streams to electrical signals, rx_bit[3:0]

Clause 53 Presentation

UNH INTEROPERABILITY LAB

PMD functions

- Signal detect function
 - Reports to PMD service interface, the presence of optical signals on all four lanes.
 - Received signal needs to be greater than -30 dBm, greater than the receiver sensitivity, and compliant with 10GBASE-WWDM signal input.

Clause 53 Presentation

UNH INTEROPERABILITY LAB

Wavelength assignments

Lane	Wavelength Ranges	
Lane 0	1269.0 – 1282.4 nm	
Lane 1	1293.5 – 1306.9 nm	
Lane 2	1318.0 – 1331.4 nm	
Lane 3	1342.5 – 1355.9 nm	

Clause 53 Presentation

UNH INTEROPERABILITY LAB

Operating ranges

Fiber Type	MHz*km	Minimum range (meters)
62.5 µm MMF	500	300
50 µm MMF	400	240
50 µm MMF	500	300
SMF	n/a	10,000

Clause 53 Presentation

UNH INTEROPERABILITY LAB

Conclusions

- For LAN WDM PHY
 - XAUI to XAUI implementation
 - Well-known coding scheme (8B/10B)
 - 4 lanes at 3.125 Gbps
 - 300m of MMF, 10km of SMF
 - Leaves room for future expansion
 - More wavelengths
 - Higher speeds

Clause 53 Presentation

UNH INTEROPERABILITY LAB

To Learn More

 For more information regarding 10 Gigabit Ethernet, or the 10 Gigabit Ethernet Consortium, feel free to contact me via email: Eric Lynskey <u>elynskey@iol.unh.edu</u> Or visit our website:

UNH IOL 10 Gigabit Ethernet Consortium

Clause 53 Presentation

UNH INTEROPERABILITY LAB