
Gigabit Ethernet

- Focus -
Physical Coding Sublayer (PCS)
Functional Basics and Overview

Based on: IEEE 802.3ab - Draft4.2 dated November 15 ,1998

March 29, 2000 Update: Corrected error in Trellis Diagram, added 1000T
Convolutional Encoder and Convolutional Reset slides

1000BASE-T

Presentation Outline

• Brief System Overview
• Basic Coding Theory Overview
• The 1000BASE-T Coding System

System Objectives
• Provide 1000Mbps Full Duplex Link between nodes

System Objectives
• Provide 1000Mbps Full Duplex Link between nodes
• Support large installed base of Cat 5 Balanced cable

System Objectives
• Provide 1000Mbps Full Duplex Link between nodes
• Support large installed base of Cat 5 Balanced cable
• Operate with a bit error rate (BER) of ≤ 10-10

Boom

To put this in perspective: One byte is sent every 8ns. If
bytes of data were sent constantly, every 10 seconds a bit
detected at the receiver may be erred.

Objectives
• Provide 1000Mbps Full Duplex Link between nodes
• Support large installed base of Cat 5 Balanced cable
• Operate with a bit error rate (BER) of ≤ 10-10

• Meet or exceed FCC Class A/CISPR

Other Objectives
• Support CSMA/CD MAC (clause 4)
• Comply with GMII Specification (clause

35)
• Support 1000Mbps repeater (clause 41)
• Support Auto-Negotiation (clause 28)

Upper layers

LLC

MAC Control

MAC

PCS

PMA

AutoNeg

Reconciliation

GMII

Auto-Xover
MDI/X

Link
Aggegation

MDI

AutoNeg

Auto-Xover
MDI/X

Node 1

Channel (Medium)

MDI

PCS

PMA

GMII

1000Mbps Baseband
Repeater Unit

AutoNeg

Auto-Xover
MDI/X

MDI

PCS

PMA

GMII

Channel (Medium)

Upper layers

LLC

MAC Control

MAC

PCS

PMA

AutoNeg

Reconciliation

GMII

Auto-Xover
MDI/X

Link
Aggegation

MDI

Node 2

1000BASE-T
INTERFACE

Basic Coding Theory Overview
• Communication Systems 101
• Scrambling Basics
• Descrambling Basics
• Block Codes
• Trellis Encoding
• Viterbi Decoding

Communication Systems 101
• What is the goal of any communication system?

Communication Systems 101
• What is the goal of any communication system?

To convey information to a receiving party or parties.
• Be it a radio transmission across a hostile battlefield environment
• A laser beam between two distant satellites
• Or simply a person trying to communicate to someone across a crowded

noisy room

Communication Systems 101
• What is the goal of any communication system?
• What is required to communicate?

Communication Systems 101

Communication Systems 101
• What is the goal of any communication system?
• What is required to communicate?

• Prior knowledge of rate constraints
• Prior knowledge of the symbol set in use
• Prior knowledge of the structure of what is being conveyed

Take for example: A conversation (say a presentation)
• A speaker can only talk so fast (or slow) and still be understood
• Phonemes make up the basic set of sounds used
• Those sounds form known words for a given:

– language
– grammar
– dialect

Scrambling Basics
• First - What is the purpose of scrambling?

The purpose of scrambling is NOT to make a receiver’s job
more difficult (except maybe in military applications) but
rather to combat issues related to the channel between the
transmitter and receiver.

(recall that the term “channel” refers to any medium between the transmitter
and receiver - be it copper cabling, fiber optic cabling, air or vacuum)

Scrambling Basics
• First - What is the purpose of scrambling?

The purpose of scrambling is NOT to make a receiver’s job
more difficult (except maybe in military applications) but
rather to combat issues related to the channel between the
transmitter and receiver.

(recall that the term “channel” refers to any medium between the transmitter
and receiver - be it copper cabling, fiber optic cabling, air or vacuum)

In 1000Base-T, scrambling’s main purpose is to
temporally and spatially decorrelate the
transmitted data. -- Lets explore that …

Scrambling Basics
• Why is scrambling necessary?

Consider a simple communication system that commonly sends a
repeating pattern of 1010 and 1100 on a 4 channel medium.

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Ti
m

e

Scrambling Basics
Recall that “ones and zeros” are not sent on the channel, but rather an analog
waveform is sent. In the diagram below a two level waveform is sent, where
a data ‘1’ causes a transition, and a data ‘0’ causes the waveform to remain at
the same level. (the horizontal dashed lines represent the bit-time boundaries)

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Ti
m

e

Scrambling Basics
Observe that the continuous repetition of 1’s results in the highest frequency
waveform on the channel. As higher frequencies tend to radiate “better”,
scrambling can help to eliminate such strong high frequency components (by
temporally decorrelating the data on the channel.)

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Ti
m

e

Time
Domain

Frequency
Domain
(|Re(FFT(x))|)

0 fs(max)

Scrambling Basics
In this example, as the “all 1’s” signal contains the highest frequency, any
data sequence other than all 1’s naturally has a lower frequency content.

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Ti
m

e Time
Domain Frequency

Domain
(|Re(FFT(x))|)

0 fs(max)fs(max)/2

Scrambling Basics
By scrambling the data, no single frequency is sent for any significant period
of time, thus the power is spread out over a range in the frequency spectrum.
This type of technique is oft referred to as “spread spectrum” as it effectively
whitens the frequency content of the signal and thereby reduces the power of
any particular frequency component. This technique also makes more
efficient use of the available bandwidth (as the entire band may be utilized).

10001100101110100110100001110000111

Frequency
Domain
(|Re(FFT(x))|)

0 fs(max)fs(max)/2

10101010101010101010101010101010101

Frequency
Domain
(|Re(FFT(x))|)

0 fs(max)fs(max)/2

Continuous Repeating 1010 pattern Psuedo-random data pattern

Scrambling Basics
Scrambling is said to “whiten” the data’s frequency content based on the color
white which contains all visible colors (frequencies).

Electrical noise is commonly Additive White Gaussian Noise (AWGN)
which, simply put, means that the noise is random and occupies all
frequencies (hence the term “white”).

By scrambling the data, the radiated power from the channel looks effectively
like noise. This helps meet the FCC requirements. Also, since there are
multiple channels in close proximity, the radiated power received on one
channel from another (called cross-talk) is not correlated to the data being
sent. This “spatial decorrelation” assists the receiver on the channel from
distinguishing the desired signal from the background noise.

Scrambling Basics
• How do you scramble data?

Scrambling Basics
• How do you scramble data?

Easy, take each symbol, and alter it by a random value!

Descrambling Basics
• How do you scramble data?

Easy, take each symbol, and alter it by a random value!

• How do you scramble data such that it can be
descrambled?
Take each symbol and alter it by a pseudo-random value.

Descrambling Basics
• Take each symbol and alter it by a pseudo-random value.
Take for example the scenario where:

the user wishes to send: HELLO WORLD
the transmitter maps the characters to “symbols” suitable for “the channel”
H E L L O W O R L D

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
08 05 12 12 15 23 15 18 12 04

Descrambling Basics
• Take each symbol and alter it by a pseudo-random value.
Take for example the scenario where:

the user wishes to send: HELLO WORLD
the transmitter maps the characters to “symbols” suitable for “the channel”

“scramble” the symbols by adding a pseudo-random value
H E L L O W O R L D

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
08 05 12 12 15 23 15 18 12 04

-1 -1 +1 -1 +1 +1 +1 -1 -1 +1

07 04 13 11 16 24 16 17 11 05

Descrambling Basics
• Our example continues - at the receiver:
Assume the receiver detects the scrambled sequence properly:

If we decode this as is:
07 04 13 11 16 24 16 17 11 05

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
G D M K P X P Q K E

Clearly, this is not: HELLO WORLD

The receiver must somehow know what scrambling operation was
performed on the data!!

Descrambling Basics
• The receiver must know the scrambling sequence

Hence why the scrambler must use a pseudo-random value - if it
were truly random, the receiver could not know the sequence!

Descrambling Basics
• The receiver must know the scrambling sequence

Hence why the scrambler must use a pseudo-random value - if it
were truly random, the receiver could not know the sequence!

• Pseudo-random values can be generated by any sequence which
appears to be locally random, but is actually periodic.
A common practical implementation of a pseudo-random number generator is

through a linear feedback shift register (LFSR).
An LFSR of ‘n’ elements will identically repeat its output every 2n-1 outputs
A simple 3 element LFSR is shown below:

The repeating 7-code pattern for this LFSR is 0010111 (1 = “1” 0 = “-1”)

T T T

Output bit

Descrambling Basics
• The receiver must also synchronize its descrambler

To recover the current location of the transmitter in its scrambling sequence.
One option to achieve this method, “brute force” exhaustive search of space - requires
knowledge of what ‘should’ be sent (this is typically the idle pattern - say,
HELLOWORLD was sent constantly between data)

07 04 13 11 16 24 16 17 11 05

-1 +1 -1 -1 -1 +1 +1 -1 +1 +1 F E L K O Y Q P L F

+1 -1 +1 -1 -1 -1 +1 +1 -1 +1 H C N K O W Q R K F

+1 +1 -1 +1 -1 -1 -1 +1 +1 -1 -> H E L L O W O R L D

-1 +1 +1 -1 +1 -1 -1 -1 +1 +1 F E N K Q W O P L F

+1 -1 +1 +1 -1 +1 -1 -1 -1 +1 H C N L O Y O P K F

+1 +1 -1 +1 +1 -1 +1 -1 -1 -1 H E L L Q W Q P K D

-1 +1 +1 -1 +1 +1 -1 +1 -1 -1 F E N K Q Y O R K D

-1 -1 +1 +1 -1 +1 +1 -1 +1 -1 F C N L O Y Q P L D

-1 -1 -1 +1 +1 -1 +1 +1 -1 +1 F C L L Q W Q R K F

+1 -1 -1 -1 +1 +1 -1 +1 +1 -1 H C L K Q Y O R L D

Descrambling Basics
Fortunately, real implementations transmit the current state of the

LFSR (typically in the idle mode) such that the receiver can easily
recover the state of the transmitter’s scrambler.

Rather than exhaustively searching for alignment, the receiver’s
‘n’-bit descrambling LFSR is simply “primed” with the first ‘n’
bits received from the line.

Block Codes
• Expands the code space of the data being transmitted.
• Allows an intelligent selection of channel symbols from

the desired block of data being sent.
• Typical Benefits of Block Codes

• Permits rich transition densities (allows for easier clock recovery)
• Permits DC Balanced codes to be used
• Permits non-data (control) codes, such as IDLE, Start of Frame, etc

• Some Ethernet Block Codes: 4B/5B 8B/10B 6B/3T

ex: 100Base-TX 4B/5B “0 0 0 0” <-----> “1 1 1 1 0”

Data Code Space

Redundant
Data Code Space

Mapped
Data Code

Space Control
Code Space

"Bad" CodesBlock
Encode/Decode

Convolutional Codes
• Convolutional Codes could be considered a special class

of Block Codes
• The term “convolutional” is used as the output symbol

sequence is generated by the convolution of the input
sequence and a “generator” sequence.

• The generator sequence is a K element delay line with
modulo-2 adder feedback. -- This is just another way of
saying a LFSR!

• In terms we are familiar with, a convolutional code is
simply the result of XOR’ing the transmit data with the
output of a scrambler.

Convolutional Codes
• A Simple Convolutional Encoder example

Below, the sequence 0n1n-11n-20n-3 is fed into the encoder, consisting
of the time delay blocks, and XOR blocks.

Note the output 00n11n-101n-201n-3 is at twice the input rate

T T Output bitInput bit

T T Output bitInput bit
0

110
0 0

0 0

0

00 00 00

Convolutional Codes

T T Output bitInput bit
01

10 0

1 1

1

11 00 00

T T Output bitInput bit
11

0 0

0 0

1

01 11 00

T T Output bitInput bit
10 1

1 0

1

01 01 11

Trellis Diagrams
• The preceding convolutional encoder can be

represented in another form - a Trellis Diagram.

Trellis Diagrams
• Recall, the Convolutional Encoder example

encoded 0110 to 00,11,01,01.
End

(to"idle"
mode)

01

If data to send is '0', follow solid line from
state and output codegroup (in blue)
If data to send is '1', follow dashed line from
state and output codegroup (in blue)

...

...

...

...

00

10

00 00 00 0000

11 11 11 11

01 01 01

10 10 10

01 01 01 01

11
11 11 11 11 11

00

00 00

10 10 1010

Start
(from
"idle"
mode)

Trellis Diagrams
• It should be clear now how this simple trellis

provides a “structure” to the transmitted data
stream, as only valid transitions through the trellis
may be transmitted!
(In the example, after the codegroup 11 is sent, only the

codegroup 01 or 10 are permissible)

Viterbi Decoding
• This structure provided to the underlying symbols

transmitted is comparable to spelling and grammar
rules. consider:
“I coldn’t wait til it was over”
“I can’t believe their still awake”

Both symbol sequences are erred, but the
knowledge of the structure of the transmission,
allows the receiver to properly decode the
sequence.

Viterbi Decoding
• A Viterbi Decoder provides error correction. Not

just error detection like most other LAN block
codes.

• This results in a tolerance to a certain bit error rate
(BER). Thus, the overall system performance,
often expressed in terms of the signal-to-noise ratio
(SNR) is effectively increased by several dB when
a trellis encoder/viterbi decoder is employed.

Viterbi Decoding
• Consider once again the example trellis diagram

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
 ie: '00' is 2 distant from '11', as is '01' from '10', etc..

00

10

00 0000

11 11 11 11

01 01 01

10 10 10

01 01 01

11
11 11

00

00 00
10 10 10

Start
(from
"idle"
mode)

11

Viterbi Decoding
• From idle, the first code group is received

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
 ie: '00' is 2 distant from '11', as is '01' from '10', etc..

00

10

00 0000

11 11 11 11

01 01 01

10 10 10

01 01 01

11
11 11

00

00 00
10 10 10

Start
(from
"idle"
mode)

11

01Received
Data

d=1

d=1

Viterbi Decoding
• As more codes arrive, multiple possible paths emerge

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
 ie: '00' is 2 distant from '11', as is '01' from '10', etc..

00

10

00 0000

11 11 11 11

01 01 01

10 10 10

01 01 01

11
11 11

00

00 00
10 10 10

Start
(from
"idle"
mode)

11

01Received
Data

d=2

d=1

00

d=2

d=3

d=1

d=1

Viterbi Decoding
• Some of these paths merge, leaving only 1 survivor

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
 ie: '00' is 2 distant from '11', as is '01' from '10', etc..

00

10

00 0000

11 11 11 11

01 01 01

10 10 10

01 01 01

11
11 11

00

00 00
10 10 10

Start
(from
"idle"
mode)

11

01Received
Data 00

d=2

d=5

01

d=3

d=2

Viterbi Decoding
• As merged paths represent higher/(or equal) cost paths to the same

point, no harm is done by eliminating them.

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
 ie: '00' is 2 distant from '11', as is '01' from '10', etc..

00

10

00 0000

11 11 11 11

01 01 01

10 10 10

01 01 01

11
11 11

00

00 00
10 10 10

Start
(from
"idle"
mode)

11

01Received
Data 00

d=3

01

d=2 d=4

Viterbi Decoding
• As more codes arrive, the overall path costs change. How many codes

must the system wait for to achieve an optimal decode???

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
 ie: '00' is 2 distant from '11', as is '01' from '10', etc..

00

10

00 0000

11 11 11 11

01 01 01

10 10 10

01 01 01

11
11 11

00

00 00
10 10 10

Start
(from
"idle"
mode)

11

01Received
Data 00

d=3

01

d=2

d=2

d=2

d=3

d=1

d=2

d=2

Viterbi Decoding
• Depending on the trellis design, the required number of codes to wait

for could be quite large, which increases the system delay!

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
 ie: '00' is 2 distant from '11', as is '01' from '10', etc..

00

10

00 0000

11 11 11 11

01 01 01

10 10 10

01 01 01

11
11 11

00

00 00
10 10 10

Start
(from
"idle"
mode)

11

01Received
Data 00

d=3

01

d=3

d=2

d=2

d=2

d=2

d=3

d=2

00

Viterbi Decoding
• Eventually, 0100010000 is decoded via the red path yielding the data

0,0,0,0,0. Thus, 2 bit errors did not prevent proper decode!!

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
 ie: '00' is 2 distant from '11', as is '01' from '10', etc..

00

10

00 0000

11 11 11 11

01 01 01

10 10 10

01 01 01

11
11 11

00

00 00
10 10 10

Start
(from
"idle"
mode)

11

01Received
Data 00

d=3

01

d=2

d=2

d=2

d=3

d=3

00 00

d=3

Intermission
• Catch your breath
• Ask some questions that can’t wait
• Fasten your seatbelt, the fun is just

beginning!!

The 1000BASE-T Coding System
• Selecting the Channel Symbols
• Increasing Symbol Distance
• Defining the 4D/PAM5 Structure
• The Trellis structure used
• The Master/Slave Scramblers employed
• The 1000BASE-T Frame Structure

Selecting the Channel Symbols
• The 1000BASE-T phy will interface to the upper layers via

the 8-bit wide GMII. Thus, during frame transmission, the
phy receives a new 8-bit word to send from the GMII every
8ns (125Mhz).

• A natural choice is to encode the full 8-bit word to some
symbol space.

• To keep the signaling rate low, all four pairs of the Cat 5
cable will be used. Thus, only four 250Mbps channels are
required.

Selecting the Channel Symbols
• A system could be selected that has a high number of levels

per symbol period, however additional levels increase the
complexity of the system.

• As the data from the GMII is clocked at 125MHz, a natural
choice is to use this clock rate to drive symbols onto the
channel - especially as 100Base-TX devices currently operate
at 125MHz while sourcing three-level (MLT-3) symbols.

• Unfortunately, the phy is receiving 256 (28) data codes every
8ns. Even if the 3 level 100Base-TX system were used across
all 4 pairs, only 81 (34) symbols would exist

Selecting the Channel Symbols
• So, while there are benefits to leveraging the 100Base-TX

design knowledge at the 125MHz speeds, clearly a three level
system will not work.

• Will 4 levels do? 44 = 256, so yes, there are enough
symbols to map the data codes; however, there are no
remaining codes for control signals (idle, start of frame, end
of frame) nor are there and codes available for redundancy.

• Will 5 levels do? 54 = 625. Yes! In fact, enough codes exist
in the symbol space to allow for 100% redundancy (use 512
codes for data, rather than just 256) and still leave 113
symbols for control signals.

Selecting the Channel Symbols
• These 5 symbols are labeled as -2, -1, 0, +1, +2

(+/- 2 actually maps to +/-1V, and +/-1 maps to +/- 0.5V)

• If the symbols -1 and +1 are not used, and only one channel is
transmitted on, then the output is very similar to 100Base-TX
signaling (allowing for simpler dual 100/1000 speed
implementations)

Increasing Symbol Distance
• While the symbols -2, -1, 0, +1, or +2 are sent per transmitter, recall

that the 1000BASE-T system uses all four pairs of the Category 5
balanced cable.

• The combined output of all four transmitters on each line forms a
four-dimensional constellation.

Such a constellation is formed by
taking the possible outputs of each
transmitter as an axis orthogonal
(at right angles) to the other axis.
For every symbol period, one
point in the constellation is sent.
While the real system is a
5x5x5x5 constellation, a simple
5x5 constellation is easier to
explain…

Increasing Symbol Distance
• However, noise affects the constellation. If too much noise

disrupts the signaling, then the receiver will not be able to
distinguish between the correct point in the constellation and
neighboring (incorrect) points.

Increasing Symbol Distance
• Attenuation also affects the constellation, with similar

concerns.

Increasing Symbol Distance
• As the attenuation/noise distortion increases, the problem of

differentiating between points within the constellation
becomes obvious.

Increasing Symbol Distance
• To combat this problem, limit the permissible combination of

symbols.
• The images below are identical to the previous, simply the

“even” and “odd” constellation points have been separated.

EVEN ODD

Increasing Symbol Distance
• The separation of “even” and “odd” points has the effect of

increasing the minimum distance between the permissible
transmit codes. Prior to the separation, the minimum
Euclidean distance was 1. Now it is 2.5 Thus, the minimum
squared Euclidean distance is now 2.

EVEN ODD

The 4D/PAM5 System
• Let us define symbol subsets X = -1, +1 & Y = -2, 0, +2
• The Even subset can be written as:

YY ___ YY ___ YY
___ XX ___ XX ___
YY ___ YY ___ YY
___ XX ___ XX ___
YY ___ YY ___ YY min sqr distance = 2

This subset can be further separated to:
YY ___ YY ___ YY
___ ___ ___ ___ ___
YY ___ YY ___ YY
___ ___ ___ ___ ___
YY ___ YY ___ YY min sqr distance = 4

The 4D/PAM5 System
The remaining subset from the even subset is:

___ ___ ___ ___ ___
___ XX ___ XX ___
___ ___ ___ ___ ___
___ XX ___ XX ___
___ ___ ___ ___ ___ min sqr distance = 4

The 4D/PAM5 System
• Likewise, the Odd subset can be written as:

___ XY ___ XY ___
YX ___ YX ___ YX
___ XY ___ XY ___
YX ___ YX ___ YX
___ XY ___ XY ___ min sqr distance = 2

This subset can be further separated to:
___ ___ ___ ___ ___
YX ___ YX ___ YX
___ ___ ___ ___ ___
YX ___ YX ___ YX
___ ___ ___ ___ ___ min sqr distance = 4

The 4D/PAM5 System
• Likewise, the Odd subset can be written as:

___ XY ___ XY ___
___ ___ ___ ___ ___
___ XY ___ XY ___
___ ___ ___ ___ ___
___ XY ___ XY ___ min sqr distance = 4

• Why is any of this useful??
Recall that the Viterbi Decoder will choose the lowest cost path,

and even properly choose the correct path even after several
error events have been received, provided no other (incorrect)
path is a lower cost! Hence, maximizing the separation of the
symbols is highly desirable.

The 4D/PAM5 System
• Recall that the symbol distance example up to this point has been for

only a 2-D constellation. As each of the four channels can be sending a
symbol from X or Y, there are naturally 16 combinations.

• These 16 sets can be reduced to 8 and still keep a min. sqr distance of 4
between the symbols on the four channels. This is done identically to
the previous 2-D channel constellation sub-set breakdown. We can now
form the 4D sub-lattices constellations:
D0 XXXX + YYYY Any two points within each sub-lattice has a min.
D1 XXXY + YYYX square distance of 4.
D2 XXYY + YYXX Similarly, any two points in different sub-lattices
D3 XXYX + YYXY has a min. square distance of 4.
D4 XYYX + YXXY
D5 XYYY + YXXX
D6 XYXY + YXYX
D7 XYXX + YXYY

The Trellis Structure
• ICBST (It can be shown that) the distance between

any two points in a sublattice is at least 4.
D4: XYYX + YXXY - pick +1,-2,+2,-1 and 0,-1,+1,0
(+1 - 0)2 + (-2 - -1)2 + (+2 - +1)2 + (-1 - 0)2= 1+1+1+1=4
Of course, some points are more than 4 distant
D0: XXXX + YYYY pick -2, -2, 0, -2 and 0,0,-2,0 dist=8 !

D0 (YYYY specifically) make up
the 1000BASE-T IDLE codes
as their min sqr distance is (2√2)2=6

• The defined sublattice-to-symbol group mapping is
used to govern the transitions in the trellis diagram.

IDLE

CSn[0]CSn[1] CSn[2]

Sdn[7]Sdn[6] Sdn[8]

tx_enable n-2

Delay DelayDelay

+ +

1000BASE-T Convolutional Encoder
as per IEEE Std802.3ab-1999 Section 40.3.1.3.4

The 1000BASE-T Convolutional
Encoder

The Trellis
Structure

D0 D2 D4 D6

D1 D3 D5 D7

D2 D0 D6 D4

D3 D1 D7 D5

D4 D6 D0 D2

D5 D7 D1 D3

D6 D4 D2 D0

D7 D5 D3 D1

D0 D2 D4 D6

D1 D3 D5 D7

D2 D0 D6 D4

D3 D1 D7 D5

D4 D6 D0 D2

D5 D7 D1 D3

D6 D4 D2 D0

D7 D5 D3 D1

Convolutional Encoder
Bits at time n

Convolutional Encoder
Bits at time n+1

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

The Trellis Structure
• Notice that IDLE (D0 Subset codes) does not benefit

from the trellis structure - only data frames do.
• The benefit of the complexity of this system is an

effective coding gain of 6dB !
• Also notice that to return to idle, two “convolutional

resets” are required to guarantee that the 0 (top) state
can be returned to. For example: a frame’s data may
end with the trellis in state 3, the only path back to
idle (state 0) requires two codes (the first to either
state 4,5,6,or 7, and the next back to state 0) This is
illustrated in the following slide.

Convolutional Reset (CSReset)
Convolutional Encoder
Bits at time n (end of frame data)

Convolutional Encoder
Bits at time n+1

001

011

101

111

011

100

101

110

111

000

010

001

010

100

110

000000

001

010

011

100

101

110

111

001

010

011

100

101

110

111

000

Convolutional Encoder
Bits at time n+2

State of Encoder
at End of

Frame Data

First CSReset
in Dashed/Red: causes transition

to 000, 010, 100,or 110

Second CSReset
in Dashed/Red: causes transition

to 000 Subset (IDLE ∈ =000)

The Master/Slave Scramblers
• The chosen scrambler (LFSR) length is 33 bits.

• That’s 233-1 or 8589934591 bits before the LFSR
pattern repeats, that’s 68.72s (100Base-TX is only 2047bits)

• The two parties on a 1000BASE-T link are referred to
as Master and Slave. The Master is the clock source.
The Slave recovers the Master’s clock and uses that
clock to transmit and receive. (How this relationship is
developed is explored in Phy Control and Auto-Negotiation)

The Master/Slave Scramblers
• The LFSR Structures used are:

Master

Slave

The Master uses the Master Side-Stream Scrambler to transmit, and the
Slave Side-Stream Scrambler to receive, and vice versa for the Slave.

T T T

0 1 2

... T T T T

12 13 19 20

... T T

31 32

...

T T T

0 1 2

... T T T T

12 13 19 20

... T T

31 32

...

The 1000BASE-T Frame Format
• Constantly active: either idle, 2byte SSD, Data, or 4byte ‘end frame’

References
• IEEE 802.3ab/D4.2 November 15, 1998
• IEEE 802.3ab Std-1999
• Dr. Sailesh K Rao, Level One, private conversations, November 1998
• Dr. John Creigh, Broadcom, private conversations, November 1998
• “Modified 4D 8-state Trellis Coding for 1000Base-T”, by Sailesh K

Rao, Level One, August 15, 1997
• “4D Encoding in Level-One’s Proposal for 1000BASE-T”, by Jaime E.

Kardontchik, Advanced Micro Devices, August 1997
• “Principles of Digital Communication and Coding”, by Andrew J.

Viterbi and Jim K. Omura. McGraw Hill Inc, ©1979.
• “802.3ab A Tutorial Presentation”, by Colin Mick, Chris DiMinico,

Sreen Raghavan, Sailesh Rao, Mehdi Hatamian

